Artificial intelligence applications and reconfigurable architectures

ARTIFICIAL INTELLIGENCE APPLICATIONS and RECONFIGURABLE ARCHITECTURES The primary goal of this book is to present the design, implementation, and performance issues of AI applications and the suitability of the FPGA platform. This book covers the features of modern Field Programmable Gate Arrays (FP...

Descripción completa

Detalles Bibliográficos
Otros Autores: Bhandari, Sheetal Umesh, editor (editor), Thakare, Anuradha D., editor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, New Jersey : John Wiley & Sons [2023]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009724218506719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Chapter 1 Strategic Infrastructural Developments to Reinforce Reconfigurable Computing for Indigenous AI Applications
  • 1.1 Introduction
  • 1.2 Infrastructural Requirements for AI
  • 1.3 Categories in AI Hardware
  • 1.3.1 Comparing Hardware for Artificial Intelligence
  • 1.4 Hardware AI Accelerators to Support RC
  • 1.4.1 Computing Support for AI Application: Reconfigurable Computing to Foster the Adaptation
  • 1.4.2 Reconfiguration Computing Model
  • 1.4.3 Reconfigurable Computing Model as an Accelerator
  • 1.5 Architecture and Accelerator for AI-Based Applications
  • 1.5.1 Advantages of Reconfigurable Computing Accelerators
  • 1.5.2 Disadvantages of Reconfigurable Computing Accelerators
  • 1.6 Conclusion
  • References
  • Chapter 2 Review of Artificial Intelligence Applications and Architectures
  • 2.1 Introduction
  • 2.2 Technological Platforms for AI Implementation-Graphics Processing Unit
  • 2.3 Technological Platforms for AI Implementation-Field Programmable Gate Array (FPGA)
  • 2.3.1 Xilinx Zynq
  • 2.3.2 Stratix 10 NX Architecture
  • 2.4 Design Implementation Aspects
  • 2.5 Conclusion
  • References
  • Chapter 3 An Organized Literature Review on Various Cubic Root Algorithmic Practices for Developing Efficient VLSI Computing System-Understanding Complexity
  • 3.1 Introduction
  • 3.2 Motivation
  • 3.3 Numerous Cubic Root Methods for Emergent VLSI Computing System-Extraction
  • 3.4 Performance Study and Discussion
  • 3.5 Further Research
  • 3.6 Conclusion
  • References
  • Chapter 4 An Overview of the Hierarchical Temporal Memory Accelerators
  • 4.1 Introduction
  • 4.2 An Overview of Hierarchical Temporal Memory
  • 4.3 HTM on Edge
  • 4.4 Digital Accelerators
  • 4.4.1 PIM HTM
  • 4.4.2 PEN HTM
  • 4.4.3 Classic
  • 4.5 Analog and Mixed-Signal Accelerators
  • 4.5.1 RCN HTM.
  • 4.5.2 RBM HTM
  • 4.5.3 Pyragrid
  • 4.6 Discussion
  • 4.6.1 On-Chip Learning
  • 4.6.2 Data Movement
  • 4.6.3 Memory Requirements
  • 4.6.4 Scalability
  • 4.6.5 Network Lifespan
  • 4.6.6 Network Latency
  • 4.6.6.1 Parallelism
  • 4.6.6.2 Pipelining
  • 4.6.7 Power Consumption
  • 4.7 Open Problems
  • 4.8 Conclusion
  • References
  • Chapter 5 NLP-Based AI-Powered Sanskrit Voice Bot
  • 5.1 Introduction
  • 5.2 Literature Survey
  • 5.3 Pipeline
  • 5.3.1 Collect Data
  • 5.3.2 Clean Data
  • 5.3.3 Build Database
  • 5.3.4 Install Required Libraries
  • 5.3.5 Train and Validate
  • 5.3.6 Test and Update
  • 5.3.7 Combine All Models
  • 5.3.8 Deploy the Bot
  • 5.4 Methodology
  • 5.4.1 Data Collection and Storage
  • 5.4.1.1 Web Scrapping
  • 5.4.1.2 Read Text from Image
  • 5.4.1.3 MySQL Connectivity
  • 5.4.1.4 Cleaning the Data
  • 5.4.2 Various ML Models
  • 5.4.2.1 Linear Regression and Logistic Regression
  • 5.4.2.2 SVM - Support Vector Machine
  • 5.4.2.3 PCA - Principal Component Analysis
  • 5.4.3 Data Pre-Processing and NLP Pipeline
  • 5.5 Results
  • 5.5.1 Web Scrapping and MySQL Connectivity
  • 5.5.2 Read Text from Image
  • 5.5.3 Data Pre-Processing
  • 5.5.4 Linear Regression
  • 5.5.5 Linear Regression Using TensorFlow
  • 5.5.6 Bias and Variance for Linear Regression
  • 5.5.7 Logistic Regression
  • 5.5.8 Classification Using TensorFlow
  • 5.5.9 Support Vector Machines (SVM)
  • 5.5.10 Principal Component Analysis (PCA)
  • 5.5.11 Anomaly Detection and Speech Recognition
  • 5.5.12 Text Recognition
  • 5.6 Further Discussion on Classification Algorithms
  • 5.6.1 Using Maximum Likelihood Estimator
  • 5.6.2 Using Gradient Descent
  • 5.6.3 Using Naive Bayes' Decision Theory
  • 5.7 Conclusion
  • Acknowledgment
  • References
  • Chapter 6 Automated Attendance Using Face Recognition
  • 6.1 Introduction
  • 6.2 All Modules Details
  • 6.2.1 Face Detection Model.
  • 6.2.2 Image Preprocessing
  • 6.2.3 Trainer Model
  • 6.2.4 Recognizer
  • 6.3 Algorithm
  • 6.4 Proposed Architecture of System
  • 6.4.1 Face Detection Model
  • 6.4.2 Image Enhancement
  • 6.4.3 Trainer Model
  • 6.4.4 Face Recognition Model
  • 6.5 Conclusion
  • References
  • Chapter 7 A Smart System for Obstacle Detection to Assist Visually Impaired in Navigating Autonomously Using Machine Learning Approach
  • 7.1 Introduction
  • 7.2 Related Research
  • 7.3 Evaluation of Related Research
  • 7.4 Proposed Smart System for Obstacle Detection to Assist Visually Impaired in Navigating Autonomously Using Machine Learning Approach
  • 7.4.1 System Description
  • 7.4.2 Algorithms for Proposed Work
  • 7.4.3 Devices Required for the Proposed System
  • 7.5 Conclusion and Future Scope
  • References
  • Chapter 8 Crop Disease Detection Accelerated by GPU
  • 8.1 Introduction
  • 8.2 Literature Review
  • 8.3 Algorithmic Study
  • 8.4 Proposed System
  • 8.5 Dataset
  • 8.6 Existing Techniques
  • 8.7 Conclusion
  • References
  • Chapter 9 A Relative Study on Object and Lane Detection
  • 9.1 Introduction
  • 9.2 Algorithmic Survey
  • 9.2.1 Object Detection Using Color Masking
  • 9.2.1.1 Color Masking
  • 9.2.1.2 Modules/Libraries Used
  • 9.2.1.3 Algorithm for Color Masking
  • 9.2.1.4 Advantages and Disadvantages
  • 9.2.1.5 Verdict
  • 9.2.2 YOLO v3 Object Detection
  • 9.2.2.1 YOLO v3
  • 9.2.2.2 Algorithm Architecture
  • 9.2.2.3 Advantages and Disadvantages
  • 9.2.2.4 Verdict
  • 9.3 YOLO v/s Other Algorithms
  • 9.3.1 OverFeat
  • 9.3.2 Region Convolutional Neural Networks
  • 9.3.3 Very Deep Convolutional Networks for Large-Scale Image Recognition
  • 9.3.4 Deep Residual Learning for Image Recognition
  • 9.3.5 Deep Neural Networks for Object Detection
  • 9.4 YOLO and Its Version History
  • 9.4.1 YOLO v1
  • 9.4.2 Fast YOLO
  • 9.4.3 YOLO v2
  • 9.4.4 YOLO9000
  • 9.4.5 YOLO v3.
  • 9.4.6 YOLO v4
  • 9.4.7 YOLO v5
  • 9.4.8 PP-YOLO
  • 9.5 A Survey in Lane Detection Approaches
  • 9.5.1 Lidar vs. Other Sensors
  • 9.6 Conclusion
  • References
  • Chapter 10 FPGA-Based Automatic Speech Emotion Recognition Using Deep Learning Algorithm
  • 10.1 Introduction
  • 10.2 Related Work
  • 10.2.1 Machine Learning-Based SER
  • 10.2.2 Deep Learning-Based SER
  • 10.3 FPGA Implementation of Proposed SER
  • 10.4 Implementation and Results
  • 10.5 Conclusion and Future Scope
  • References
  • Chapter 11 Hardware Implementation of RNN Using FPGA
  • 11.1 Introduction
  • 11.1.1 Motivation
  • 11.1.2 Background
  • 11.1.3 Literature Survey
  • 11.1.4 Project Specification
  • 11.2 Proposed Design
  • 11.3 Methodology
  • 11.3.1 Block Diagram Explanation
  • 11.3.2 Block Diagram for Recurrent Neural Network
  • 11.3.3 Textual Input Data (One Hot Encoding)
  • 11.4 PYNQ Architecture and Functions
  • 11.4.1 Hardware Specifications
  • 11.5 Result and Discussion
  • 11.6 Conclusion
  • References
  • Index
  • EULA.