From Euclidean to Hilbert spaces introduction to functional analysis and its applications

From Euclidian to Hilbert Spaces analyzes the transition from finite dimensional Euclidian spaces to infinite-dimensional Hilbert spaces, a notion that can sometimes be difficult for non-specialists to grasp. The focus is on the parallels and differences between the properties of the finite and infi...

Descripción completa

Detalles Bibliográficos
Otros Autores: Provenzi, Edoardo, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: London, England ; Hoboken, New Jersey : ISTE [2021]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009724215306719
Tabla de Contenidos:
  • Inner Product Spaces (Pre-Hilbert)
  • The Discrete Fourier Transform and its Applications to Signal and Image Processing
  • Lebesgue's Measure and Integration Theory
  • Banach Spaces and Hilbert Spaces
  • The Geometric Structure of Hilbert Spaces
  • Bounded Linear Operators in Hilbert Spaces
  • Quotient Space
  • The Transpose (or Dual)of a Linear Operator
  • Uniform, Strong and Weak Convergence.