Infrared spectroscopy of symmetric and spherical top molecules for space observation 2
This book, Volume 4 in the series, is dedicated to the relationship between laboratory spectroscopy, recording ever-more-complex spectra using increasingly powerful instruments benefiting from the latest technology, and the development of observation using instruments that are embedded in mobile pro...
Other Authors: | , |
---|---|
Format: | eBook |
Language: | Inglés |
Published: |
London, England ; Hoboken, New Jersey :
ISTE
[2021]
|
Series: | Dahoo, Pierre Richard. Infrared spectroscopy set ;
Volume 4. |
Subjects: | |
See on Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009724214706719 |
Table of Contents:
- Cover
- Half-Title Page
- Title Page
- Copyright Page
- Contents
- Foreword
- Preface
- 1 IR Spectra in Space Observation
- 1.1. Introduction
- 1.2. Fourier transform spectroscopy
- 1.2.1. Principle of IR spectrum acquisition by interferometry
- 1.2.2. Design and operation of a long path difference interferometer
- 1.2.3. FTIR absorption spectroscopy in matrices
- 1.2.4. LIF and DR IR-IR spectroscopies in matrices
- 1.3. Resonant cavity laser absorption spectroscopy
- 1.3.1. Intracavity laser absorption spectroscopy (ICLAS)
- 1.3.2. Cavity ring-down spectroscopy (CRDS)
- 1.3.3. Frequency comb spectroscopy (FCS)
- 1.4. Spectroscopy for space observation
- 1.4.1. Spectroscopic ellipsometry for space observation
- 1.4.2. Space-borne spectroscopy
- 1.4.3. LIDAR spectroscopy for space observation
- 1.5. Conclusion
- 1.6. Appendices
- 1.6.1. Appendix 1: Measurement distortion and data processing
- 2 Interactions Between a Molecule and Its Solid Environment
- 2.1. Introduction
- 2.2. Active molecule - solid environment system
- 2.2.1. Binary interaction energy
- 2.2.2. Dispersion-repulsion contribution
- 2.2.3. Electrostatic contribution
- 2.2.4. Induction contribution
- 2.3. Two-center expansion of the term
- 2.4. Conclusion
- 2.5. Appendices
- 2.5.1. Appendix 1: Multipole moments and dipole polarizability of a molecule with respect to its fixed reference frame (G,X,Y,Z)
- 2.5.2. Appendix 2: Elements of the rotational matrix
- 2.5.3. Appendix 3: Clebsch-Gordan coefficients
- 3 Nanocage of Rare Gas Matrix
- 3.1. Introduction
- 3.2. Rare gases in solid state
- 3.3. Molecule inclusion and deformation of the doped crystal inclusion
- 3.3.1. Molecule
- 3.3.2. Deformation of the doped crystal
- 3.3.3. NH3 in an argon matrix
- 3.3.4. Renormalization of the system's Hamiltonian.
- 3.4. Motions of NH3 trapped in an argon matrix
- 3.4.1. Vibration-inversion mode v2
- 3.4.2. Orientational motion
- 3.4.3. Translational motion
- 3.4.4. Orientational motion-heat bath coupling
- 3.5. Infrared spectra
- 3.5.1. Infrared absorption coefficient
- 3.5.2. Bar spectrum
- 3.5.3. Spectral profile
- 3.6. Appendices
- 3.6.1. Appendix 1: Normal modes of vibrations of a Bravais lattice with face centered cubic (fcc) symmetry
- 3.6.2. Appendix 2: Adjustment of the weakly perturbed rotational potential energy on the basis of the rotation matrix elements
- 3.6.3. Appendix 3: Expansion coefficients of the coupling between the orientation of the molecule and lattice vibrations (phonons)
- 4 Nanocages of Hydrate Clathrates
- 4.1. Introduction
- 4.2. The extended substitution model
- 4.3. Clathrate structures
- 4.4. Inclusion of a CH4 or NH3 molecule in a clathrate nanocage model
- 4.4.1. Inclusion
- 4.4.2. Interaction potential energy - equilibrium configuration
- 4.5. System Hamiltonian and separation of movements
- 4.6. Translational motion
- 4.6.1. CH4 - nanocages of the sI structure
- 4.6.2. NH3 - nanocages of the sI structure
- 4.7. Vibrational motions
- 4.7.1. CH4 - nanocages of the sI structure
- 4.7.2. NH3 - nanocages of the sI structure
- 4.8. Orientational motion
- 4.8.1. CH4 - nanocages of the sI structure
- 4.8.2. NH3 - nanocages of the sI structure
- 4.9. Bar spectra
- 4.9.1. Far infrared
- 4.9.2. Near infrared
- 4.10. Appendices
- 4.10.1. Appendix 1: Expressions of the orientational transition elements in the harmonic librators approximation
- 4.10.2. Appendix 2: Dipole moment as a function of dimensionless normal coordinates
- 5 Fullerene Nanocage
- 5.1. Introduction
- 5.2. Ammonia molecule trapped in a fullerene C60 nanocage
- 5.2.1. Structure of the fullerene C60 nanocage.
- 5.2.2. Inclusion of NH3 in a fullerene C60 nanocage
- 5.2.3. Interaction potential energy - equilibrium configuration
- 5.3. Potential energy surfaces - inertial model
- 5.3.1. Orientation-translational motion
- 5.3.2. Translational motion
- 5.3.3. Vibration-inversion-translational motion
- 5.3.4. Kinetic Lagrangian
- 5.4. Quantum treatment
- 5.4.1. Vibrational modes - frequency shifts
- 5.4.2. Vibration-inversion mode
- 5.4.3. Orientational motions
- 5.5. Bar spectra
- 5.5.1. Far infrared and microwaves
- 5.5.2. Near infrared
- 5.6. Appendices
- 5.6.1. Appendix 1: FORTRAN program
- 5.6.2. Appendix 2: Expressions of the components of the dipole moment vector and its derivatives with respect to the normal vibrational coordinates
- 6 Adsorption on a Graphite Substrate
- 6.1. Introduction
- 6.2. "NH3 molecule-substrate" system interaction energy
- 6.2.1. Description of the system
- 6.3. Equilibrium configuration and potential energy surfaces
- 6.3.1. Adsorption energy
- 6.4. Hamiltonian of the system
- 6.4.1. Separation of movements
- 6.4.2. Renormalized Hamiltonians
- 6.4.3. Translational motions
- 6.4.4. Vibrational motions
- 6.4.5. Orientational motion
- 6.4.6. Orientational motion - heat bath dynamic coupling
- 6.5. Infrared spectra of the NH3 molecule adsorbed on the graphite substrate
- 6.5.1. Far-infrared spectrum
- 6.5.2. Near-infrared spectrum
- 6.6. Conclusion
- 6.7. Appendices
- 6.7.1. Appendix 1: FORTRAN program
- 6.7.2. Appendix 2: Expressions of the molecule orientation - heat bath phonons coupling terms
- 6.7.3. Appendix 3: Expressions of the components of the dipole moment vector and its derivatives with respect to the normal vibration coordinates
- References
- Index
- Other titles from iSTE in Waves
- EULA.