Infrared spectroscopy of symmetric and spherical top molecules for space observation 2

This book, Volume 4 in the series, is dedicated to the relationship between laboratory spectroscopy, recording ever-more-complex spectra using increasingly powerful instruments benefiting from the latest technology, and the development of observation using instruments that are embedded in mobile pro...

Full description

Bibliographic Details
Other Authors: Dahoo, Pierre Richard, author (author), Lakhlifi, Azzedine, author
Format: eBook
Language:Inglés
Published: London, England ; Hoboken, New Jersey : ISTE [2021]
Series:Dahoo, Pierre Richard. Infrared spectroscopy set ; Volume 4.
Subjects:
See on Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009724214706719
Table of Contents:
  • Cover
  • Half-Title Page
  • Title Page
  • Copyright Page
  • Contents
  • Foreword
  • Preface
  • 1 IR Spectra in Space Observation
  • 1.1. Introduction
  • 1.2. Fourier transform spectroscopy
  • 1.2.1. Principle of IR spectrum acquisition by interferometry
  • 1.2.2. Design and operation of a long path difference interferometer
  • 1.2.3. FTIR absorption spectroscopy in matrices
  • 1.2.4. LIF and DR IR-IR spectroscopies in matrices
  • 1.3. Resonant cavity laser absorption spectroscopy
  • 1.3.1. Intracavity laser absorption spectroscopy (ICLAS)
  • 1.3.2. Cavity ring-down spectroscopy (CRDS)
  • 1.3.3. Frequency comb spectroscopy (FCS)
  • 1.4. Spectroscopy for space observation
  • 1.4.1. Spectroscopic ellipsometry for space observation
  • 1.4.2. Space-borne spectroscopy
  • 1.4.3. LIDAR spectroscopy for space observation
  • 1.5. Conclusion
  • 1.6. Appendices
  • 1.6.1. Appendix 1: Measurement distortion and data processing
  • 2 Interactions Between a Molecule and Its Solid Environment
  • 2.1. Introduction
  • 2.2. Active molecule - solid environment system
  • 2.2.1. Binary interaction energy
  • 2.2.2. Dispersion-repulsion contribution
  • 2.2.3. Electrostatic contribution
  • 2.2.4. Induction contribution
  • 2.3. Two-center expansion of the term
  • 2.4. Conclusion
  • 2.5. Appendices
  • 2.5.1. Appendix 1: Multipole moments and dipole polarizability of a molecule with respect to its fixed reference frame (G,X,Y,Z)
  • 2.5.2. Appendix 2: Elements of the rotational matrix
  • 2.5.3. Appendix 3: Clebsch-Gordan coefficients
  • 3 Nanocage of Rare Gas Matrix
  • 3.1. Introduction
  • 3.2. Rare gases in solid state
  • 3.3. Molecule inclusion and deformation of the doped crystal inclusion
  • 3.3.1. Molecule
  • 3.3.2. Deformation of the doped crystal
  • 3.3.3. NH3 in an argon matrix
  • 3.3.4. Renormalization of the system's Hamiltonian.
  • 3.4. Motions of NH3 trapped in an argon matrix
  • 3.4.1. Vibration-inversion mode v2
  • 3.4.2. Orientational motion
  • 3.4.3. Translational motion
  • 3.4.4. Orientational motion-heat bath coupling
  • 3.5. Infrared spectra
  • 3.5.1. Infrared absorption coefficient
  • 3.5.2. Bar spectrum
  • 3.5.3. Spectral profile
  • 3.6. Appendices
  • 3.6.1. Appendix 1: Normal modes of vibrations of a Bravais lattice with face centered cubic (fcc) symmetry
  • 3.6.2. Appendix 2: Adjustment of the weakly perturbed rotational potential energy on the basis of the rotation matrix elements
  • 3.6.3. Appendix 3: Expansion coefficients of the coupling between the orientation of the molecule and lattice vibrations (phonons)
  • 4 Nanocages of Hydrate Clathrates
  • 4.1. Introduction
  • 4.2. The extended substitution model
  • 4.3. Clathrate structures
  • 4.4. Inclusion of a CH4 or NH3 molecule in a clathrate nanocage model
  • 4.4.1. Inclusion
  • 4.4.2. Interaction potential energy - equilibrium configuration
  • 4.5. System Hamiltonian and separation of movements
  • 4.6. Translational motion
  • 4.6.1. CH4 - nanocages of the sI structure
  • 4.6.2. NH3 - nanocages of the sI structure
  • 4.7. Vibrational motions
  • 4.7.1. CH4 - nanocages of the sI structure
  • 4.7.2. NH3 - nanocages of the sI structure
  • 4.8. Orientational motion
  • 4.8.1. CH4 - nanocages of the sI structure
  • 4.8.2. NH3 - nanocages of the sI structure
  • 4.9. Bar spectra
  • 4.9.1. Far infrared
  • 4.9.2. Near infrared
  • 4.10. Appendices
  • 4.10.1. Appendix 1: Expressions of the orientational transition elements in the harmonic librators approximation
  • 4.10.2. Appendix 2: Dipole moment as a function of dimensionless normal coordinates
  • 5 Fullerene Nanocage
  • 5.1. Introduction
  • 5.2. Ammonia molecule trapped in a fullerene C60 nanocage
  • 5.2.1. Structure of the fullerene C60 nanocage.
  • 5.2.2. Inclusion of NH3 in a fullerene C60 nanocage
  • 5.2.3. Interaction potential energy - equilibrium configuration
  • 5.3. Potential energy surfaces - inertial model
  • 5.3.1. Orientation-translational motion
  • 5.3.2. Translational motion
  • 5.3.3. Vibration-inversion-translational motion
  • 5.3.4. Kinetic Lagrangian
  • 5.4. Quantum treatment
  • 5.4.1. Vibrational modes - frequency shifts
  • 5.4.2. Vibration-inversion mode
  • 5.4.3. Orientational motions
  • 5.5. Bar spectra
  • 5.5.1. Far infrared and microwaves
  • 5.5.2. Near infrared
  • 5.6. Appendices
  • 5.6.1. Appendix 1: FORTRAN program
  • 5.6.2. Appendix 2: Expressions of the components of the dipole moment vector and its derivatives with respect to the normal vibrational coordinates
  • 6 Adsorption on a Graphite Substrate
  • 6.1. Introduction
  • 6.2. "NH3 molecule-substrate" system interaction energy
  • 6.2.1. Description of the system
  • 6.3. Equilibrium configuration and potential energy surfaces
  • 6.3.1. Adsorption energy
  • 6.4. Hamiltonian of the system
  • 6.4.1. Separation of movements
  • 6.4.2. Renormalized Hamiltonians
  • 6.4.3. Translational motions
  • 6.4.4. Vibrational motions
  • 6.4.5. Orientational motion
  • 6.4.6. Orientational motion - heat bath dynamic coupling
  • 6.5. Infrared spectra of the NH3 molecule adsorbed on the graphite substrate
  • 6.5.1. Far-infrared spectrum
  • 6.5.2. Near-infrared spectrum
  • 6.6. Conclusion
  • 6.7. Appendices
  • 6.7.1. Appendix 1: FORTRAN program
  • 6.7.2. Appendix 2: Expressions of the molecule orientation - heat bath phonons coupling terms
  • 6.7.3. Appendix 3: Expressions of the components of the dipole moment vector and its derivatives with respect to the normal vibration coordinates
  • References
  • Index
  • Other titles from iSTE in Waves
  • EULA.