Electronic waste recycling and reprocessing for a sustainable future
Discover the latest technologies in the pursuit of zero-waste solutions in the electronics industry In Electronic Waste: Recycling and Reprocessing for a Sustainable Future, a team of expert sustainability researchers delivers a collection of resources that thoroughly examine methods for extracting...
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
John Wiley & Sons, Inc
[2022]
|
Edición: | 1st |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009724213506719 |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Preface
- Chapter 1 Introduction, Vision, and Opportunities
- 1.1 Background
- 1.2 E‐Waste
- 1.3 Outline
- References
- Chapter 2 e‐Waste Management and Practices in Developed and Developing Countries*
- 2.1 Introduction
- 2.2 Overview on WEEE Management and Practices
- 2.3 International WEEE Management and Transboundary Movement
- 2.4 WEEE Management and Practices - Developed and Developing Countries
- 2.5 Developed Countries
- 2.5.1 Switzerland
- 2.5.2 Japan
- 2.5.3 Australia
- 2.6 Developing Countries
- 2.6.1 Brazil
- 2.6.2 India
- 2.6.3 South Africa
- 2.6.4 Nigeria
- 2.6.5 Taiwan
- 2.7 Conclusions
- References
- Chapter 3 e‐Waste Transboundary Movement Regulations in Various Jurisdictions*
- 3.1 Background
- 3.2 International Legislation and Transboundary Movement
- 3.3 Extended Producer Responsibility (EPR)
- 3.4 Regulations in Various Jurisdictions
- 3.4.1 Europe
- 3.4.1.1 France
- 3.4.1.2 Germany
- 3.4.1.3 Switzerland
- 3.4.1.4 Norway
- 3.4.2 Americas
- 3.4.2.1 United States of America
- 3.4.2.2 Canada
- 3.4.2.3 Brazil
- 3.4.3 Asia
- 3.4.3.1 Japan
- 3.4.3.2 China
- 3.4.3.3 Taiwan
- 3.4.3.4 India
- 3.4.4 Africa
- 3.4.4.1 South Africa
- 3.4.4.2 Nigeria
- 3.4.5 Australia
- 3.5 Conclusions
- References
- Chapter 4 Approach for Estimating e‐Waste Generation
- 4.1 Background
- 4.2 Econometric Analysis
- 4.3 Consumption and Use/Leaching/Approximation 1 Method
- 4.4 The Sales/Approximation 2 Method
- 4.5 Market Supply Method
- 4.5.1 Simple Delay
- 4.5.2 Distribution Delay Method
- 4.5.3 Carnegie Mellon Method/Mass Balance Method
- 4.6 Time‐Step Method
- 4.7 Summary of Estimation Methods
- 4.8 Lifespan of Electronic Products
- 4.9 Global e‐Waste Estimation
- References.
- Chapter 5 Materials Used in Electronic Equipment and Manufacturing Perspectives*
- 5.1 Introduction
- 5.2 Large Household Appliances (LHA)
- 5.3 Small Household Appliance (SHA)
- 5.4 IT and Telecommunications Equipment
- 5.4.1 Computers and Notebooks
- 5.4.2 Monitors and Screens
- 5.4.3 Mobile Phones (MP)
- 5.4.4 Printed Circuit Boards (PCB)
- 5.5 Photovoltaic (PV) Panels
- 5.6 Lighting Equipment
- 5.7 Toys, Leisure, and Sport
- 5.8 Future Trends in WEEE - Manufacturing, Design, and Demand
- References
- Chapter 6 Recycling Technologies - Physical Separation
- 6.1 Introduction
- 6.2 Dismantling
- 6.3 Comminution/Size Reduction
- 6.3.1 Shredders
- 6.3.2 Hammer Mills
- 6.3.3 High‐Voltage Fragmentation
- 6.3.4 Knife Mills
- 6.3.5 Cryogrinding
- 6.4 Particle Size Analysis
- 6.5 Size Separation/Classification
- 6.5.1 Screening
- 6.5.2 Classification
- 6.5.2.1 Centrifugal Classifier
- 6.5.2.2 Gravitational Classifiers
- 6.6 Magnetic Separation
- 6.6.1 Low‐Intensity Magnetic Separators
- 6.6.2 High‐Intensity Magnetic Separators
- 6.7 Electrical Separation
- 6.7.1 Corona Electrostatic Separation
- 6.7.2 Triboelectric Separation
- 6.7.3 Eddy Current Separation
- 6.8 Gravity Separation
- 6.8.1 Jigs
- 6.8.2 Spirals
- 6.8.3 Shaking Tables
- 6.8.4 Zig‐Zag Classifiers
- 6.8.5 Centrifugal Concentrators
- 6.8.6 Dense Medium Separation (DM Bath/Cyclone)
- 6.9 Froth Flotation
- 6.10 Sensor‐Based Sorting
- 6.11 Example Flowsheets
- References
- Chapter 7 Pyrometallurgical Processes for Recycling Waste Electrical and Electronic Equipment
- 7.1 Introduction
- 7.2 Printed Circuit Boards
- 7.3 Pyrometallurgical Processes
- 7.3.1 Smelting
- 7.3.1.1 Copper‐Smelting Processes - Sulfide Route
- 7.3.1.2 Copper‐Smelting Processes - Secondary Smelters
- 7.3.1.3 Lead‐Smelting Processes.
- 7.3.1.4 Advantages and Limitations of Smelting Processes
- 7.3.2 Electrochemical Processes
- 7.3.2.1 High‐Temperature Electrolysis
- 7.3.2.2 Low‐Temperature Electrolysis
- 7.3.3 Other Pyrometallurgical Operations Used in Electronic Waste Recycling
- 7.3.3.1 Roasting
- 7.3.3.2 Molten Salt Oxidation Treatment
- 7.3.3.3 Distillation
- 7.3.3.4 Pyrolysis
- References
- Chapter 8 Recycling Technologies - Hydrometallurgy
- 8.1 Background
- 8.2 Waste Printed Circuit Boards (WPCBs)
- 8.3 Photovoltaic Modules (PV)
- 8.4 Batteries
- 8.5 Light‐Emitting Diodes (LEDs)
- 8.6 Trends
- References
- Chapter 9 Recycling Technologies - Biohydrometallurgy
- 9.1 Introduction
- 9.2 Bioleaching: Metal Winning with Microbes
- 9.3 Biosorption: Selective Metal Recovery from Waste Waters
- 9.3.1 Biosorption Via Metal Selective Peptides
- 9.3.2 Chelators Derived from Nature
- 9.4 Bioflotation: Separation of Particles with Biological Means
- 9.5 Bioreduction and Bioaccumulation: Nanomaterials from Waste
- 9.6 Conclusion
- References
- Chapter 10 Processing of Nonmetal Fraction from Printed Circuit Boards and Reutilization
- 10.1 Background
- 10.2 Nonmetal Fraction Composition
- 10.3 Benefits of NMF Recycling
- 10.3.1 Economic Benefits
- 10.3.2 Environmental Protection and Public Health
- 10.4 Recycling of NMF
- 10.4.1 Physical Recycling
- 10.4.1.1 Size Classification
- 10.4.1.2 Gravity Separation
- 10.4.1.3 Magnetic Separation
- 10.4.1.4 Electrical Separation
- 10.4.1.5 Froth Flotation
- 10.4.2 Chemical Recycling
- 10.5 Potential Usage
- References
- Chapter 11 Life Cycle Assessment of e‐Waste - Waste Cellphone Recycling
- 11.1 Introduction
- 11.2 Background
- 11.2.1 Theory of Life Cycle Assessment
- 11.3 LCA Studies on WEEE
- 11.3.1 Applications on WEEE Management Strategy
- 11.3.2 Applications on WEEE Management System.
- 11.3.3 Applications on Hazardous Potential of WEEE Management and Recycling
- 11.4 Case Study
- 11.4.1 Goal and Scope Definition
- 11.4.1.1 Functional Unit
- 11.4.1.2 System Boundary
- 11.4.2 Life Cycle Inventory
- 11.4.2.1 Formal Collection
- 11.4.2.2 Informal Collection
- 11.4.2.3 Mechanical Dismantling
- 11.4.2.4 Plastic Recycling
- 11.4.2.5 Screen Glass Recycling
- 11.4.2.6 Battery Disposal
- 11.4.2.7 Electronic Refining for Materials
- 11.4.3 Life Cycle Impact Assessment
- 11.4.4 Results
- 11.4.4.1 Feature Phone Formal Collection Scenario
- 11.4.4.2 Feature Phone Informal Collection Scenario
- 11.4.4.3 Smartphone Formal Collection Scenario
- 11.4.4.4 Smartphone Informal Collection Scenario
- 11.4.5 Discussion
- 11.5 Conclusion
- References
- Chapter 12 Biodegradability and Compostability Aspects of Organic Electronic Materials and Devices
- 12.1 Introduction
- 12.1.1 Technological Innovation and Waste
- 12.1.2 Eco‐friendliness
- 12.1.3 Organic Electronics
- 12.1.4 Opportunities for Green Organic Electronics
- 12.2 State of the Art in Biodegradable Electronics
- 12.3 Organic Field‐Effect Transistors (OFETs)
- 12.3.1 Fundamentals
- 12.3.2 Anthraquinone, Benzoquinone, and Acenequinone
- 12.3.3 Quinacridones
- 12.4 Electrochemical Energy Storage
- 12.4.1 Quinones
- 12.4.2 Dopamine
- 12.4.3 Melanins
- 12.4.4 Tannins
- 12.4.5 Lignin
- 12.5 Biodegradation in Natural and Industrial Ecosystems
- 12.5.1 Degradation and Biodegradation
- 12.5.2 Composting Process
- 12.5.3 Materials Half‐Life Under Composting Conditions
- 12.5.4 Biodegradation in the Environment
- 12.6 Microbiome in Natural and Industrial Ecosystems
- 12.6.1 The Ruminant-Hay Natural Ecosystem
- 12.6.2 The Termite-Wood Natural Ecosystem
- 12.6.3 The Industrial Composter-Biowaste Ecosystem
- 12.6.3.1 Municipal Composting Facility.
- 12.6.3.2 Engineered Composting Facility
- 12.6.4 Specialized Inoculant Adapted to Organic Matter
- 12.6.5 Specialized Inoculant Adapted to Heavy Metals
- 12.7 Concluding Remarks and Perspectives
- Acknowledgment
- References
- Chapter 13 Circular Economy in Electronics and the Future of e‐Waste
- 13.1 Introduction
- 13.2 Digitalization and the Need for Electronic Devices
- 13.3 Recycling and Circular Economy
- 13.4 Challenges for e‐Waste Recycling and Circular Economy
- 13.5 Drivers for Change - Circular Economy
- 13.6 Demand for Recyclable Products
- 13.7 Summary
- References
- Index
- EULA.