Electronic waste recycling and reprocessing for a sustainable future

Discover the latest technologies in the pursuit of zero-waste solutions in the electronics industry In Electronic Waste: Recycling and Reprocessing for a Sustainable Future, a team of expert sustainability researchers delivers a collection of resources that thoroughly examine methods for extracting...

Descripción completa

Detalles Bibliográficos
Otros Autores: Holuszko, M. E., author (author), Kumar, Amit, author, Espinosa, Denise C. R., author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, New Jersey : John Wiley & Sons, Inc [2022]
Edición:1st
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009724213506719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Preface
  • Chapter 1 Introduction, Vision, and Opportunities
  • 1.1 Background
  • 1.2 E‐Waste
  • 1.3 Outline
  • References
  • Chapter 2 e‐Waste Management and Practices in Developed and Developing Countries*
  • 2.1 Introduction
  • 2.2 Overview on WEEE Management and Practices
  • 2.3 International WEEE Management and Transboundary Movement
  • 2.4 WEEE Management and Practices - Developed and Developing Countries
  • 2.5 Developed Countries
  • 2.5.1 Switzerland
  • 2.5.2 Japan
  • 2.5.3 Australia
  • 2.6 Developing Countries
  • 2.6.1 Brazil
  • 2.6.2 India
  • 2.6.3 South Africa
  • 2.6.4 Nigeria
  • 2.6.5 Taiwan
  • 2.7 Conclusions
  • References
  • Chapter 3 e‐Waste Transboundary Movement Regulations in Various Jurisdictions*
  • 3.1 Background
  • 3.2 International Legislation and Transboundary Movement
  • 3.3 Extended Producer Responsibility (EPR)
  • 3.4 Regulations in Various Jurisdictions
  • 3.4.1 Europe
  • 3.4.1.1 France
  • 3.4.1.2 Germany
  • 3.4.1.3 Switzerland
  • 3.4.1.4 Norway
  • 3.4.2 Americas
  • 3.4.2.1 United States of America
  • 3.4.2.2 Canada
  • 3.4.2.3 Brazil
  • 3.4.3 Asia
  • 3.4.3.1 Japan
  • 3.4.3.2 China
  • 3.4.3.3 Taiwan
  • 3.4.3.4 India
  • 3.4.4 Africa
  • 3.4.4.1 South Africa
  • 3.4.4.2 Nigeria
  • 3.4.5 Australia
  • 3.5 Conclusions
  • References
  • Chapter 4 Approach for Estimating e‐Waste Generation
  • 4.1 Background
  • 4.2 Econometric Analysis
  • 4.3 Consumption and Use/Leaching/Approximation 1 Method
  • 4.4 The Sales/Approximation 2 Method
  • 4.5 Market Supply Method
  • 4.5.1 Simple Delay
  • 4.5.2 Distribution Delay Method
  • 4.5.3 Carnegie Mellon Method/Mass Balance Method
  • 4.6 Time‐Step Method
  • 4.7 Summary of Estimation Methods
  • 4.8 Lifespan of Electronic Products
  • 4.9 Global e‐Waste Estimation
  • References.
  • Chapter 5 Materials Used in Electronic Equipment and Manufacturing Perspectives*
  • 5.1 Introduction
  • 5.2 Large Household Appliances (LHA)
  • 5.3 Small Household Appliance (SHA)
  • 5.4 IT and Telecommunications Equipment
  • 5.4.1 Computers and Notebooks
  • 5.4.2 Monitors and Screens
  • 5.4.3 Mobile Phones (MP)
  • 5.4.4 Printed Circuit Boards (PCB)
  • 5.5 Photovoltaic (PV) Panels
  • 5.6 Lighting Equipment
  • 5.7 Toys, Leisure, and Sport
  • 5.8 Future Trends in WEEE - Manufacturing, Design, and Demand
  • References
  • Chapter 6 Recycling Technologies - Physical Separation
  • 6.1 Introduction
  • 6.2 Dismantling
  • 6.3 Comminution/Size Reduction
  • 6.3.1 Shredders
  • 6.3.2 Hammer Mills
  • 6.3.3 High‐Voltage Fragmentation
  • 6.3.4 Knife Mills
  • 6.3.5 Cryogrinding
  • 6.4 Particle Size Analysis
  • 6.5 Size Separation/Classification
  • 6.5.1 Screening
  • 6.5.2 Classification
  • 6.5.2.1 Centrifugal Classifier
  • 6.5.2.2 Gravitational Classifiers
  • 6.6 Magnetic Separation
  • 6.6.1 Low‐Intensity Magnetic Separators
  • 6.6.2 High‐Intensity Magnetic Separators
  • 6.7 Electrical Separation
  • 6.7.1 Corona Electrostatic Separation
  • 6.7.2 Triboelectric Separation
  • 6.7.3 Eddy Current Separation
  • 6.8 Gravity Separation
  • 6.8.1 Jigs
  • 6.8.2 Spirals
  • 6.8.3 Shaking Tables
  • 6.8.4 Zig‐Zag Classifiers
  • 6.8.5 Centrifugal Concentrators
  • 6.8.6 Dense Medium Separation (DM Bath/Cyclone)
  • 6.9 Froth Flotation
  • 6.10 Sensor‐Based Sorting
  • 6.11 Example Flowsheets
  • References
  • Chapter 7 Pyrometallurgical Processes for Recycling Waste Electrical and Electronic Equipment
  • 7.1 Introduction
  • 7.2 Printed Circuit Boards
  • 7.3 Pyrometallurgical Processes
  • 7.3.1 Smelting
  • 7.3.1.1 Copper‐Smelting Processes - Sulfide Route
  • 7.3.1.2 Copper‐Smelting Processes - Secondary Smelters
  • 7.3.1.3 Lead‐Smelting Processes.
  • 7.3.1.4 Advantages and Limitations of Smelting Processes
  • 7.3.2 Electrochemical Processes
  • 7.3.2.1 High‐Temperature Electrolysis
  • 7.3.2.2 Low‐Temperature Electrolysis
  • 7.3.3 Other Pyrometallurgical Operations Used in Electronic Waste Recycling
  • 7.3.3.1 Roasting
  • 7.3.3.2 Molten Salt Oxidation Treatment
  • 7.3.3.3 Distillation
  • 7.3.3.4 Pyrolysis
  • References
  • Chapter 8 Recycling Technologies - Hydrometallurgy
  • 8.1 Background
  • 8.2 Waste Printed Circuit Boards (WPCBs)
  • 8.3 Photovoltaic Modules (PV)
  • 8.4 Batteries
  • 8.5 Light‐Emitting Diodes (LEDs)
  • 8.6 Trends
  • References
  • Chapter 9 Recycling Technologies - Biohydrometallurgy
  • 9.1 Introduction
  • 9.2 Bioleaching: Metal Winning with Microbes
  • 9.3 Biosorption: Selective Metal Recovery from Waste Waters
  • 9.3.1 Biosorption Via Metal Selective Peptides
  • 9.3.2 Chelators Derived from Nature
  • 9.4 Bioflotation: Separation of Particles with Biological Means
  • 9.5 Bioreduction and Bioaccumulation: Nanomaterials from Waste
  • 9.6 Conclusion
  • References
  • Chapter 10 Processing of Nonmetal Fraction from Printed Circuit Boards and Reutilization
  • 10.1 Background
  • 10.2 Nonmetal Fraction Composition
  • 10.3 Benefits of NMF Recycling
  • 10.3.1 Economic Benefits
  • 10.3.2 Environmental Protection and Public Health
  • 10.4 Recycling of NMF
  • 10.4.1 Physical Recycling
  • 10.4.1.1 Size Classification
  • 10.4.1.2 Gravity Separation
  • 10.4.1.3 Magnetic Separation
  • 10.4.1.4 Electrical Separation
  • 10.4.1.5 Froth Flotation
  • 10.4.2 Chemical Recycling
  • 10.5 Potential Usage
  • References
  • Chapter 11 Life Cycle Assessment of e‐Waste - Waste Cellphone Recycling
  • 11.1 Introduction
  • 11.2 Background
  • 11.2.1 Theory of Life Cycle Assessment
  • 11.3 LCA Studies on WEEE
  • 11.3.1 Applications on WEEE Management Strategy
  • 11.3.2 Applications on WEEE Management System.
  • 11.3.3 Applications on Hazardous Potential of WEEE Management and Recycling
  • 11.4 Case Study
  • 11.4.1 Goal and Scope Definition
  • 11.4.1.1 Functional Unit
  • 11.4.1.2 System Boundary
  • 11.4.2 Life Cycle Inventory
  • 11.4.2.1 Formal Collection
  • 11.4.2.2 Informal Collection
  • 11.4.2.3 Mechanical Dismantling
  • 11.4.2.4 Plastic Recycling
  • 11.4.2.5 Screen Glass Recycling
  • 11.4.2.6 Battery Disposal
  • 11.4.2.7 Electronic Refining for Materials
  • 11.4.3 Life Cycle Impact Assessment
  • 11.4.4 Results
  • 11.4.4.1 Feature Phone Formal Collection Scenario
  • 11.4.4.2 Feature Phone Informal Collection Scenario
  • 11.4.4.3 Smartphone Formal Collection Scenario
  • 11.4.4.4 Smartphone Informal Collection Scenario
  • 11.4.5 Discussion
  • 11.5 Conclusion
  • References
  • Chapter 12 Biodegradability and Compostability Aspects of Organic Electronic Materials and Devices
  • 12.1 Introduction
  • 12.1.1 Technological Innovation and Waste
  • 12.1.2 Eco‐friendliness
  • 12.1.3 Organic Electronics
  • 12.1.4 Opportunities for Green Organic Electronics
  • 12.2 State of the Art in Biodegradable Electronics
  • 12.3 Organic Field‐Effect Transistors (OFETs)
  • 12.3.1 Fundamentals
  • 12.3.2 Anthraquinone, Benzoquinone, and Acenequinone
  • 12.3.3 Quinacridones
  • 12.4 Electrochemical Energy Storage
  • 12.4.1 Quinones
  • 12.4.2 Dopamine
  • 12.4.3 Melanins
  • 12.4.4 Tannins
  • 12.4.5 Lignin
  • 12.5 Biodegradation in Natural and Industrial Ecosystems
  • 12.5.1 Degradation and Biodegradation
  • 12.5.2 Composting Process
  • 12.5.3 Materials Half‐Life Under Composting Conditions
  • 12.5.4 Biodegradation in the Environment
  • 12.6 Microbiome in Natural and Industrial Ecosystems
  • 12.6.1 The Ruminant-Hay Natural Ecosystem
  • 12.6.2 The Termite-Wood Natural Ecosystem
  • 12.6.3 The Industrial Composter-Biowaste Ecosystem
  • 12.6.3.1 Municipal Composting Facility.
  • 12.6.3.2 Engineered Composting Facility
  • 12.6.4 Specialized Inoculant Adapted to Organic Matter
  • 12.6.5 Specialized Inoculant Adapted to Heavy Metals
  • 12.7 Concluding Remarks and Perspectives
  • Acknowledgment
  • References
  • Chapter 13 Circular Economy in Electronics and the Future of e‐Waste
  • 13.1 Introduction
  • 13.2 Digitalization and the Need for Electronic Devices
  • 13.3 Recycling and Circular Economy
  • 13.4 Challenges for e‐Waste Recycling and Circular Economy
  • 13.5 Drivers for Change - Circular Economy
  • 13.6 Demand for Recyclable Products
  • 13.7 Summary
  • References
  • Index
  • EULA.