Analysis and Optimisation of a New Differential Steering Concept
The emergence of electric drives opens up new opportunities in vehicle design. For example, powerful in-wheel motors pro -vide unprecedented flexibility in chassis design and are suitable for distributed drive solutions, although implying non-trivial vehicle dynamics control problems. This work aims...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Berlin, Germany :
Logos Verlag Berlin GmbH
2022.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009720292806719 |
Tabla de Contenidos:
- List of Symbols and Acronyms IX
- 1 Introduction 1
- 1.1 State of the Art in Differential Steering 3
- 1.2 Motivation and Outline of the Thesis 6
- 2 Vehicle Model with Differential Steering 9
- 2.1 Model Definition and Kinematics 10
- 2.2 Nonlinear Equations of Motion 15
- 2.3 Tyre Models 18
- 2.3.1 Modelling Considerations and Tyre Model Selection 18
- 2.3.2 The Magic Formula Tyre Model 19
- 2.3.3 Bore Torque Modelling 24
- 2.3.4 Load Distribution and Load Transfer 27
- 3 Symbolic Linearisation of Equations of Motion 29
- 3.1 Symbolic Taylor Expansion 30
- 3.2 State Reduction 34
- 3.3 Representation in the Frequency Domain 35
- 3.4 Application to the Vehicle Model 36
- 3.4.1 Symbolic Manipulations on the Vehicle Model 36
- 3.4.2 Validation of the Linearised Model 42
- 4 Control of the Differential Steering System 45
- 4.1 Full State Feedback Lateral Control for High-Speed Operation 45
- 4.1.1 Closed-Loop System 46
- 4.1.2 Feedback Gain Calculation Using the LQ-Principle 47
- 4.1.3 Feedforward Gain Calculation 48
- 4.1.4 Reference Model 49
- 4.1.5 Gain Scheduling Extension 50
- 4.2 Angle Tracking Controller for Low-Speed Operation 50
- 4.2.1 PI Control Rule 51
- 4.2.2 Control Design with Root Locus Method 51
- 5 Simulations and Steering Characterisation 55
- 5.1 Simulation Framework 55
- 5.2 Simulation Studies 56
- 5.2.1 Step Steer Simulation 56
- 5.2.2 Steady-State Cornering 59
- 5.2.3 Double Lane Change 61
- 5.2.4 Low-Speed Manoeuvring 62
- 5.3 Steering Performance Characterisation 63
- 5.3.1 Dynamic Performance in the Time Domain 64
- 5.3.2 Tracking Performance in the Frequency Domain 65
- 5.3.3 Steady-State Cornering Performance 68
- 5.3.4 Low-Speed Manoeuvring Performance 69
- 6 Multi-Objective Steering Performance Optimisation 71
- 6.1 Design Parametrisation 72
- 6.2 Sensitivity Studies 73
- 6.2.1 Preselection of Control Parameter τd 73
- 6.2.2 Identification of the Most Influential Parameters 74
- 6.3 Optimisation Strategy 79
- 6.3.1 Formulation of the Optimisation Problem 79
- 6.3.2 Optimisation Assistance by Response Surfaces 80
- 6.3.3 Optimisation Procedure 82
- 6.4 Discussion of Optimisation Results 86
- 7 Disturbance Rejection of the Differential Steering System 91
- 7.1 Wheel-Curb Collision Model 92
- 7.2 Simulation Framework for Collision Investigations 96
- 7.3 Collision Simulations 98
- 8 Conclusions and Outlook 101
- Appendix: Detailed Results of Model Derivation 103
- A.1 Kinematics 103
- A.2 Equations of Motion 108
- A.3 Constraints 115
- List of Figures 117
- List of Tables 121
- References 123.