Analysis and Optimisation of a New Differential Steering Concept

The emergence of electric drives opens up new opportunities in vehicle design. For example, powerful in-wheel motors pro -vide unprecedented flexibility in chassis design and are suitable for distributed drive solutions, although implying non-trivial vehicle dynamics control problems. This work aims...

Descripción completa

Detalles Bibliográficos
Otros Autores: Kuslits, Márton, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Berlin, Germany : Logos Verlag Berlin GmbH 2022.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009720292806719
Tabla de Contenidos:
  • List of Symbols and Acronyms IX
  • 1 Introduction 1
  • 1.1 State of the Art in Differential Steering 3
  • 1.2 Motivation and Outline of the Thesis 6
  • 2 Vehicle Model with Differential Steering 9
  • 2.1 Model Definition and Kinematics 10
  • 2.2 Nonlinear Equations of Motion 15
  • 2.3 Tyre Models 18
  • 2.3.1 Modelling Considerations and Tyre Model Selection 18
  • 2.3.2 The Magic Formula Tyre Model 19
  • 2.3.3 Bore Torque Modelling 24
  • 2.3.4 Load Distribution and Load Transfer 27
  • 3 Symbolic Linearisation of Equations of Motion 29
  • 3.1 Symbolic Taylor Expansion 30
  • 3.2 State Reduction 34
  • 3.3 Representation in the Frequency Domain 35
  • 3.4 Application to the Vehicle Model 36
  • 3.4.1 Symbolic Manipulations on the Vehicle Model 36
  • 3.4.2 Validation of the Linearised Model 42
  • 4 Control of the Differential Steering System 45
  • 4.1 Full State Feedback Lateral Control for High-Speed Operation 45
  • 4.1.1 Closed-Loop System 46
  • 4.1.2 Feedback Gain Calculation Using the LQ-Principle 47
  • 4.1.3 Feedforward Gain Calculation 48
  • 4.1.4 Reference Model 49
  • 4.1.5 Gain Scheduling Extension 50
  • 4.2 Angle Tracking Controller for Low-Speed Operation 50
  • 4.2.1 PI Control Rule 51
  • 4.2.2 Control Design with Root Locus Method 51
  • 5 Simulations and Steering Characterisation 55
  • 5.1 Simulation Framework 55
  • 5.2 Simulation Studies 56
  • 5.2.1 Step Steer Simulation 56
  • 5.2.2 Steady-State Cornering 59
  • 5.2.3 Double Lane Change 61
  • 5.2.4 Low-Speed Manoeuvring 62
  • 5.3 Steering Performance Characterisation 63
  • 5.3.1 Dynamic Performance in the Time Domain 64
  • 5.3.2 Tracking Performance in the Frequency Domain 65
  • 5.3.3 Steady-State Cornering Performance 68
  • 5.3.4 Low-Speed Manoeuvring Performance 69
  • 6 Multi-Objective Steering Performance Optimisation 71
  • 6.1 Design Parametrisation 72
  • 6.2 Sensitivity Studies 73
  • 6.2.1 Preselection of Control Parameter τd 73
  • 6.2.2 Identification of the Most Influential Parameters 74
  • 6.3 Optimisation Strategy 79
  • 6.3.1 Formulation of the Optimisation Problem 79
  • 6.3.2 Optimisation Assistance by Response Surfaces 80
  • 6.3.3 Optimisation Procedure 82
  • 6.4 Discussion of Optimisation Results 86
  • 7 Disturbance Rejection of the Differential Steering System 91
  • 7.1 Wheel-Curb Collision Model 92
  • 7.2 Simulation Framework for Collision Investigations 96
  • 7.3 Collision Simulations 98
  • 8 Conclusions and Outlook 101
  • Appendix: Detailed Results of Model Derivation 103
  • A.1 Kinematics 103
  • A.2 Equations of Motion 108
  • A.3 Constraints 115
  • List of Figures 117
  • List of Tables 121
  • References 123.