Neural networks in finance gaining predictive edge in the market

This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. Mc...

Descripción completa

Detalles Bibliográficos
Autor principal: McNelis, Paul D. (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Burlington, MA : Elsevier Academic Press c2005.
Colección:Academic Press advanced finance series.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009714838406719
Descripción
Sumario:This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. McNelis utilizes a variety of examples, from forecasting automobile production and corporate bond spread, to inflation and deflation processes in Hong Kong and Japan, to credit card default in Germany to bank failures in Texas, to cap-floor volatilities in New York and Hong Kong.* Offe
Notas:Description based upon print version of record.
Descripción Física:1 online resource (261 p.)
Bibliografía:Includes bibliographical references (p. [221]-231) and index.
ISBN:9781281008268
9786611008260
9780080479651