CMOS analog and mixed-signal circuit design practices and innovations

The purpose of this book is to provide a complete working knowledge of the Complementary Metal-Oxide Semiconductor (CMOS) analog and mixed-signal circuit design, which can be applied for System on Chip (SOC) or Application-Specific Standard Product (ASSP) development. It begins with an introduction...

Full description

Bibliographic Details
Other Authors: Marzuki, Arjuna, 1975- author (author)
Format: eBook
Language:Inglés
Published: Boca Raton, FL : CRC Press [2020]
Edition:1.
Subjects:
See on Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009714838206719
Table of Contents:
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Table of Contents
  • Preface
  • Acknowledgments
  • Author
  • Chapter 1: CMOS Analog and Mixed-Signal Circuit Design: An Overview
  • 1.1 Introduction
  • 1.2 Notation, Symbol, and Terminology
  • 1.3 Technology, Circuit Topology, and Methodology
  • 1.4 Analog and Mixed-Signal Integrated Design Concepts
  • 1.5 Summary
  • Chapter 2: Devices: An Overview
  • 2.1 Introduction
  • 2.2 The PN Junction
  • 2.2.1 Fermi Level
  • 2.2.2 Depletion Layer Capacitance
  • 2.2.3 Storage Capacitance
  • 2.3 Photo Devices
  • 2.4 FETs
  • 2.4.1 Long Channel Approximation
  • 2.4.1.1 MOS Structure
  • 2.4.1.2 MOS with External Bias
  • 2.4.1.3 MOS Operation
  • 2.4.1.4 Current-Voltage Characteristics
  • 2.4.2 MOSFET Scaling
  • 2.4.2.1 Full Scaling
  • 2.4.2.2 Constant-Voltage Scaling
  • 2.4.3 Weak Inversion
  • 2.4.4 Short-Channel
  • 2.4.4.1 Carrier Drift Velocity Models
  • 2.4.4.2 VDSAT
  • 2.4.4.3 Current-Voltage Equation for Short Channel Transistor
  • 2.4.5 MOSFET Capacitor
  • 2.4.5.1 Oxide-Related Capacitance
  • 2.4.5.2 Junction Capacitance
  • 2.4.6 MOSFET Transition Frequency
  • 2.4.7 Noise
  • 2.4.7.1 Thermal Noise
  • 2.4.7.2 Flicker Noise
  • 2.5 Process Fitting Ratio
  • 2.5.1 150-90 nm Design Transfer
  • 2.6 MOSFET Parameter Exercise
  • 2.7 SPICE Example
  • 2.8 Summary
  • References
  • Chapter 3: Amplifiers
  • 3.1 Introduction
  • 3.1.1 CMOS Amplifier
  • 3.2 Input Voltage Range
  • 3.2.1 Theory
  • 3.2.2 Example
  • 3.3 Signal Path of CMOS Operational Amplifier
  • 3.3.1 Overall Signal Path
  • 3.3.2 Load
  • 3.3.3 Cascode Current Source
  • 3.3.4 Example
  • 3.4 CMOS Amplifier Parameters
  • 3.4.1 Input Offset
  • 3.4.2 Common Mode Input Voltage Range
  • 3.4.3 Current Consumption
  • 3.4.4 Common Mode Rejection Ratio (CMRR)
  • 3.4.5 Power Supply Rejection Ratio
  • 3.4.6 Slew Rate and Settling Time
  • 3.4.7 DC Gain, fs, and fT.
  • 3.4.8 Noise
  • 3.4.9 Distortion
  • 3.5 Common Mode Feedback
  • 3.6 Compensation in Amplifier
  • 3.6.1 Loop Response
  • 3.6.2 Pulse Response
  • 3.7 Wideband Amplifier Technique
  • 3.7.1 Source and Load
  • 3.7.2 Stages and Feedback
  • 3.8 Noises in Amplifiers
  • 3.8.1 Noise in Circuits
  • 3.8.2 Noise in Single-Stage Amplifiers
  • 3.8.3 Noise in Differential Pairs
  • 3.8.4 Noise in Amplifier with Resistors in the Feedback
  • 3.8.5 Noise Bandwidth
  • 3.9 Current Density Design Approach
  • 3.10 Layout Examples
  • 3.11 Summary
  • References
  • Chapter 4: Low Power Amplifier
  • 4.1 Introduction
  • 4.2 Low Voltage CMOS Amplifier
  • 4.2.1 Body or Bulk Control
  • 4.2.2 Circuit Technique
  • 4.3 Subthreshold
  • 4.4 Current Reuse CMOS Amplifier
  • 4.5 Other Techniques
  • 4.5.1 Common-Gate with Gain-Boosting Wideband Differential LNA
  • 4.6 Spice Example
  • 4.7 Summary
  • References
  • Chapter 5: Voltage Regulator, References and Biasing
  • 5.1 Introduction
  • 5.2 Current Sources
  • 5.3 Self-Biased
  • 5.4 CTAT and PTAT
  • 5.5 Bandgap Voltage Reference
  • 5.5.1 Bandgap Reference
  • 5.6 Diode-Less Voltage Reference
  • 5.7 Cascode Current Source
  • 5.8 Regulated Power Supply
  • 5.9 Design Example
  • 5.10 Spice Example
  • 5.11 Layout Example
  • 5.12 Summary
  • Problems
  • References
  • Chapter 6: Introduction of Advanced Analog Circuit
  • 6.1 Introduction
  • 6.2 MOSFET as a Switch
  • 6.3 Basic Switched Capacitor
  • 6.3.1 Switching Capacitor Sensitive to Parasitic Capacitances
  • 6.4 Active Integrator
  • 6.4.1 Non-inverting Switching Capacitor Non-sensitive to Parasitic Capacitances
  • 6.4.2 Inverting Active Integrator without a Delay
  • 6.4.3 Inverting the Switching Capacitor with a Delay, Non-sensitive to Parasitic Capacitances
  • 6.4.4 SC Behavior in Discrete Points of Time
  • 6.4.5 Non-inverting Active Integrator with a Delay
  • 6.5 Sample-and-Hold Amplifier.
  • 6.6 Programmable Gain Amplifier
  • 6.6.1 Timing
  • 6.6.2 Common Mode Feedback
  • 6.6.2.1 AMP and CMFB
  • 6.7 Chopper Amplifier
  • 6.8 Dynamic Element Matching Technique
  • 6.9 Resistor-Less Current Reference
  • 6.10 Switch Mode Converter
  • 6.11 SPICE Example
  • 6.12 Layout Issue
  • 6.13 Summary
  • References
  • Chapter 7: Data Converter
  • 7.1 Introduction
  • 7.2 Digital-to-Analog Converter
  • 7.2.1 Resistor String Topology
  • 7.2.2 Current Steering
  • 7.2.3 Hybrid Topology
  • 7.2.4 DAC Trimming or Calibration
  • 7.2.5 Glitch
  • 7.3 Analog-to-Digital Converter
  • 7.3.1 Slope ADC
  • 7.3.2 SAR ADC
  • 7.3.3 Flash ADC
  • 7.3.4 Pipelined ADC
  • 7.3.5 Delta Sigma ADC
  • 7.4 SPICE Example
  • 7.4.1 DAC Example
  • 7.4.2 ADC Example
  • 7.5 Layout Examples
  • 7.6 Summary
  • References
  • Chapter 8: CMOS Color and Image Sensor Circuit Design
  • 8.1 Introduction
  • 8.2 Technology and Methodology
  • 8.2.1 General Comments on Technology or Process for CMOS Image Sensor
  • 8.2.2 Backside Illumination
  • 8.2.3 Photo Devices
  • 8.2.4 Design Methodology
  • 8.3 CMOS Color Sensor
  • 8.3.1 Transimpedance Amplifier Topology
  • 8.3.2 Current to Frequency Topology
  • 8.3.3 Current Integration Topology
  • 8.4 CMOS Image Sensor
  • 8.4.1 CMOS Image Sensor Architecture
  • 8.4.1.1 Pixel-Level ADC
  • 8.4.1.2 Column-Level ADC
  • 8.4.1.3 Chip-Level ADC
  • 8.4.2 Analog Pixel Sensor
  • 8.4.3 Digital Pixel Sensor
  • 8.4.4 Low Power and Low Noise Technique
  • 8.4.4.1 Low Power Techniques
  • 8.4.4.2 Low Noise Techniques
  • 8.5 SPICE Example
  • 8.6 Layout
  • 8.7 Summary
  • References
  • Chapter 9: Peripheral Circuits
  • 9.1 Introduction
  • 9.2 Oscillator
  • 9.2.1 Ring Oscillator
  • 9.2.2 RC Oscillator
  • 9.2.2.1 Ramp Oscillator
  • 9.3 Non-overlapping Generator
  • 9.4 Interface Circuitry
  • 9.4.1 Basic Interface Circuit
  • 9.4.2 I2C
  • 9.5 I/O Pad
  • 9.6 Schmitt Trigger Circuit.
  • 9.7 Voltage Level Shifters
  • 9.8 Power on Reset
  • 9.9 ESD Circuit
  • 9.10 SPICE Example
  • 9.11 Layout Example
  • 9.12 Summary
  • References
  • Chapter 10: Layout and Packaging
  • 10.1 Introduction
  • 10.2 Process
  • 10.2.1 Antenna Rule
  • 10.2.2 Electromigration and Metal Density
  • 10.2.3 Shear Stress
  • 10.3 Floor Planning
  • 10.4 ESD and I/O Pad Layout
  • 10.4.1 Low Parasitic Capacitance Pad
  • 10.4.2 Seal Ring
  • 10.5 Analog Circuit Layout Technique
  • 10.5.1 Matching
  • 10.5.2 Guard Ring
  • 10.5.3 Shielding
  • 10.5.4 Voltage (IR) Drop
  • 10.5.5 Metal over Implant
  • 10.5.6 Substrate Tap
  • 10.6 Digital Circuit Layout Technique
  • 10.6.1 Power Distribution for Mixed-Signal Design
  • 10.6.2 Clock Distribution
  • 10.6.3 Latch-up
  • 10.7 Packaging
  • 10.7.1 Die Attach
  • 10.7.2 Package Type
  • 10.7.3 Package Parasitic
  • 10.8 Summary
  • References
  • Index.