Soft and stiffness-controllable robotics solutions for minimally invasive surgery the STIFF-FLOP approach
Soft and Stiffness-controllable Robotics Solutions for Minimally Invasive Surgery presents the results of a research project, funded by European Commission, STIFF-FLOP: STIFFness controllable Flexible and Learn-able manipulator for surgical Operations. In Minimally Invasive Surgery (MIS), tools go t...
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Denmark :
River Publishers
[2018]
|
Edición: | 1st ed |
Colección: | River Publishers series in automation, control and robotics.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009710534906719 |
Tabla de Contenidos:
- Front Cover
- Half Title Page
- RIVER PUBLISHERS SERIES IN AUTOMATION, CONTROL AND ROBOTICS
- Tilte Page
- Copyright Page
- Contents
- Preface
- Acknowledgements
- List of Contributors
- List of Figures
- List of Tables
- List of Abbreviations
- PART I Development of Silicone-based Stiffness Controllable Actuators
- Chapter 1 Technology Selection
- 1.1 Manipulator Specifications
- 1.1.1 Medical Requirements
- 1.1.2 Technical Specifications
- 1.2 Technological Overview of Different Actuation Strategies
- 1.2.1 Active Motion Technology Survey
- 1.2.1.1 Electromagnetic motors
- 1.2.1.2 Electro active polymers. 1.2.1.3 Shape memory alloys1.2.1.4 Shape memory polymers
- 1.2.1.5 Flexible fluidic actuator
- 1.2.2 Discussion and Choice of Active Motion Technology
- 1.2.3 Stiffness Variation Technology Survey
- 1.2.4 Comparison and Choice
- References
- Chapter 2 Design of the Multi-module Manipulator
- 2.1 The Design of the Single Module
- 2.1.1 Active Motion
- 2.1.2 Stiffness variation
- 2.2 Connection of Multiple Modules
- 2.3 Complete Characterization of the 2-Module Manipulator
- 2.3.1 Fabrication
- 2.3.2 Workspace Evaluation
- 2.3.2.1 Methods
- 2.3.2.2 Results
- 2.3.3 Junction Characterization
- 2.3.3.1 Methods. 2.3.3.2 Results2.3.4 Stiffness Characterization
- 2.3.4.1 Methods
- 2.3.4.2 Results
- 2.3.5 Combined Force and Stiffening Experiments
- 2.3.5.1 Methods
- 2.3.5.2 Results
- References
- Chapter 3 Soft Manipulator Actuation Module with Reinforced Chambers
- 3.1 Introduction
- 3.1.1 Change of the Chamber Cross Section Area
- 3.1.2 Chamber Cross Section Center Displacement
- 3.1.3 Friction between the Silicone Body and Braided Sleeve
- 3.1.4 Sensor Interaction
- 3.2 Proposed Improvements
- 3.2.1 Possible Solutions
- 3.2.2 Design
- 3.3 Manufacturing
- 3.4 Tests
- 3.4.1 Pneumatic Actuation. 3.4.2 Hydraulic Actuation3.4.3 External Force
- 3.5 Stiffening Mechanism
- 3.5.1 Basic Module Design
- 3.5.2 Optimised Module Design
- 3.6 Conclusions
- Acknowledgement
- References
- Chapter 4 Antagonistic Actuation Principle for a Silicone-based Soft Manipulator
- 4.1 Introduction
- 4.2 Background
- 4.3 Bio-Inspiration and Contributions
- 4.4 Integration of the Antagonistic Stiffening Mechanism
- 4.4.1 Embedding Tendon-driven Actuation into a STIFF-FLOP Segment
- 4.4.2 Setup of the Antagonistic Actuation Architecture
- 4.5 Test Protocol, Experimental Results, and Discussion
- 4.5.1 Methodology. 4.5.2 Experimental Results4.5.3 Discussion
- 4.6 Conclusions
- 4.7 Funding
- References
- Chapter 5 Smart Hydrogel for Stiffness Controllable Continuum Manipulators: A Conceptual Design
- 5.1 Introduction
- 5.2 Materials and Methods
- 5.2.1 Active Hydrogel Preparation
- 5.2.2 Active Hydrogel Properties and Ion Pattern Printing
- 5.3 Experiments and Discussion
- 5.3.1 Swelling Test
- 5.3.2 Stiffness Test
- 5.4 Conclusion and Future Works
- References
- PART II Creation and Integration of Multiple Sensing Modalities
- Chapter 6 Optical Force and Torque Sensor for Flexible Robotic Manipulators.