Fundamentals of wireless sensor networks theory and practice

About the Series Editors xv Preface xvii Part One: INTRODUCTION 1 Motivation for a Network of Wireless Sensor Nodes 3 1.1 Definitions and Background 4 1.2 Challenges and Constraints 9 2 Applications 17 2.1 Structural Health Monitoring 17 2.2 Traffic Control 26 2.3 Health Care 30...

Descripción completa

Detalles Bibliográficos
Autor principal: Dargie, Waltenegus (-)
Otros Autores: Poellabauer, Christian
Formato: Libro electrónico
Idioma:Inglés
Publicado: Chichester, West Sussex, U.K. ; Hoboken, NJ : Wiley 2010.
Edición:1st ed
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009707735606719
Tabla de Contenidos:
  • Intro
  • FUNDAMENTALS OF WIRELESS SENSOR NETWORKS
  • Contents
  • About the Series Editors
  • Preface
  • Part One: INTRODUCTION
  • 1 Motivation for a Network of Wireless Sensor Nodes
  • 1.1 Definitions and Background
  • 1.1.1 Sensing and Sensors
  • 1.1.2 Wireless Sensor Networks
  • 1.2 Challenges and Constraints
  • 1.2.1 Energy
  • 1.2.2 Self-Management
  • 1.2.3 Wireless Networking
  • 1.2.4 Decentralized Management
  • 1.2.5 Design Constraints
  • 1.2.6 Security
  • 1.2.7 Other Challenges
  • Exercises
  • References
  • 2 Applications
  • 2.1 Structural Health Monitoring
  • 2.1.1 Sensing Seismic Events
  • 2.1.2 Single Damage Detection Using Natural Frequencies
  • 2.1.3 Multiple Damage Detection Using Natural Frequencies
  • 2.1.4 Multiple Damage Detection Using Mode Shapes
  • 2.1.5 Coherence
  • 2.1.6 Piezoelectric Effect
  • 2.1.7 Prototypes
  • 2.2 Traffic Control
  • 2.2.1 The Sensing Task
  • 2.2.2 Prototypes
  • 2.3 Health Care
  • 2.3.1 Available Sensors
  • 2.3.2 Prototypes
  • 2.4 Pipeline Monitoring
  • 2.4.1 Prototype
  • 2.5 Precision Agriculture
  • 2.5.1 Prototypes
  • 2.6 Active Volcano
  • 2.6.1 Prototypes
  • 2.7 Underground Mining
  • 2.7.1 Sources of Accidents
  • 2.7.2 The Sensing Task
  • Exercises
  • References
  • 3 Node Architecture
  • 3.1 The Sensing Subsystem
  • 3.1.1 Analog-to-Digital Converter
  • 3.2 The Processor Subsystem
  • 3.2.1 Architectural Overview
  • 3.2.2 Microcontroller
  • 3.2.3 Digital Signal Processor
  • 3.2.4 Application-Specific Integrated Circuit
  • 3.2.5 Field Programmable Gate Array
  • 3.2.6 Comparison
  • 3.3 Communication Interfaces
  • 3.3.1 Serial Peripheral Interface
  • 3.3.2 Inter-Integrated Circuit
  • 3.3.3 Summary
  • 3.4 Prototypes
  • 3.4.1 The IMote Node Architecture
  • 3.4.2 The XYZ Node Architecture
  • 3.4.3 The Hogthrob Node Architecture
  • Exercises
  • References
  • 4 Operating Systems
  • 4.1 Functional Aspects.
  • 4.1.1 Data Types
  • 4.1.2 Scheduling
  • 4.1.3 Stacks
  • 4.1.4 System Calls
  • 4.1.5 Handling Interrupts
  • 4.1.6 Multithreading
  • 4.1.7 Thread-Based vs Event-Based Programming
  • 4.1.8 Memory Allocation
  • 4.2 Nonfunctional Aspects
  • 4.2.1 Separation of Concern
  • 4.2.2 System Overhead
  • 4.2.3 Portability
  • 4.2.4 Dynamic Reprogramming
  • 4.3 Prototypes
  • 4.3.1 TinyOS
  • 4.3.2 SOS
  • 4.3.3 Contiki
  • 4.3.4 LiteOS
  • 4.4 Evaluation
  • Exercises
  • References
  • Part Two: BASIC ARCHITECTURAL FRAMEWORK
  • 5 Physical Layer
  • 5.1 Basic Components
  • 5.2 Source Encoding
  • 5.2.1 The Efficiency of a Source Encoder
  • 5.2.2 Pulse Code Modulation and Delta Modulation
  • 5.3 Channel Encoding
  • 5.3.1 Types of Channels
  • 5.3.2 Information Transmission over a Channel
  • 5.3.3 Error Recognition and Correction
  • 5.4 Modulation
  • 5.4.1 Modulation Types
  • 5.4.2 Quadratic Amplitude Modulation
  • 5.4.3 Summary Signal Propagation
  • 5.5 Signal Propagation
  • Exercises
  • References
  • 6 Medium Access Control
  • 6.1 Overview
  • 6.1.1 Contention-Free Medium Access
  • 6.1.2 Contention-Based Medium Access
  • 6.2 Wireless MAC Protocols
  • 6.2.1 Carrier Sense Multiple Access
  • 6.2.2 Multiple Access with Collision Avoidance (MACA) and MACAW
  • 6.2.3 MACA By Invitation
  • 6.2.4 IEEE 802.11
  • 6.2.5 IEEE 802.15.4 and ZigBee
  • 6.3 Characteristics of MAC Protocols in Sensor Networks
  • 6.3.1 Energy Efficiency
  • 6.3.2 Scalability
  • 6.3.3 Adaptability
  • 6.3.4 Low Latency and Predictability
  • 6.3.5 Reliability
  • 6.4 Contention-Free MAC Protocols
  • 6.4.1 Characteristics
  • 6.4.2 Traffic-Adaptive Medium Access
  • 6.4.3 Y-MAC
  • 6.4.4 DESYNC-TDMA
  • 6.4.5 Low-Energy Adaptive Clustering Hierarchy
  • 6.4.6 Lightweight Medium Access Control
  • 6.5 Contention-Based MAC Protocols
  • 6.5.1 Power Aware Multi-Access with Signaling
  • 6.5.2 Sensor MAC
  • 6.5.3 Timeout MAC.
  • 6.5.4 Pattern MAC
  • 6.5.5 Routing-Enhanced MAC
  • 6.5.6 Data-Gathering MAC
  • 6.5.7 Preamble Sampling and WiseMAC
  • 6.5.8 Receiver-Initiated MAC
  • 6.6 Hybrid MAC Protocols
  • 6.6.1 Zebra MAC
  • 6.6.2 Mobility Adaptive Hybrid MAC
  • 6.7 Summary
  • Exercises
  • References
  • 7 Network Layer
  • 7.1 Overview
  • 7.2 Routing Metrics
  • 7.2.1 Commonly Used Metrics
  • 7.3 Flooding and Gossiping
  • 7.4 Data-Centric Routing
  • 7.4.1 Sensor Protocols for Information via Negotiation
  • 7.4.2 Directed Diffusion
  • 7.4.3 Rumor Routing
  • 7.4.4 Gradient-Based Routing
  • 7.5 Proactive Routing
  • 7.5.1 Destination-Sequenced Distance Vector
  • 7.5.2 Optimized Link State Routing
  • 7.6 On-Demand Routing
  • 7.6.1 Ad Hoc On-Demand Distance Vector
  • 7.6.2 Dynamic Source Routing
  • 7.7 Hierarchical Routing
  • 7.8 Location-Based Routing
  • 7.8.1 Unicast Location-Based Routing
  • 7.8.2 Multicast Location-Based Routing
  • 7.8.3 Geocasting
  • 7.9 QoS-Based Routing Protocols
  • 7.9.1 Sequential Assignment Routing
  • 7.9.2 SPEED
  • 7.9.3 Multipath Multi-SPEED
  • 7.10 Summary
  • Exercises
  • References
  • Part Three: NODE AND NETWORK MANAGEMENT
  • 8 Power Management
  • 8.1 Local Power Management Aspects
  • 8.1.1 Processor Subsystem
  • 8.1.2 Communication Subsystem
  • 8.1.3 Bus Frequency and RAM Timing
  • 8.1.4 Active Memory
  • 8.1.5 Power Subsystem
  • 8.2 Dynamic Power Management
  • 8.2.1 Dynamic Operation Modes
  • 8.2.2 Dynamic Scaling
  • 8.2.3 Task Scheduling
  • 8.3 Conceptual Architecture
  • 8.3.1 Architectural Overview
  • Exercises
  • References
  • 9 Time Synchronization
  • 9.1 Clocks and the Synchronization Problem
  • 9.2 Time Synchronization in Wireless Sensor Networks
  • 9.2.1 Reasons for Time Synchronization
  • 9.2.2 Challenges for Time Synchronization
  • 9.3 Basics of Time Synchronization
  • 9.3.1 Synchronization Messages.
  • 9.3.2 Nondeterminism of Communication Latency
  • 9.4 Time Synchronization Protocols
  • 9.4.1 Reference Broadcasts Using Global Sources of Time
  • 9.4.2 Lightweight Tree-Based Synchronization
  • 9.4.3 Timing-sync Protocol for Sensor Networks
  • 9.4.4 Flooding Time Synchronization Protocol
  • 9.4.5 Reference-Broadcast Synchronization
  • 9.4.6 Time-Diffusion Synchronization Protocol
  • 9.4.7 Mini-Sync and Tiny-Sync
  • Exercises
  • References
  • 10 Localization
  • 10.1 Overview
  • 10.2 Ranging Techniques
  • 10.2.1 Time of Arrival
  • 10.2.2 Time Difference of Arrival
  • 10.2.3 Angle of Arrival
  • 10.2.4 Received Signal Strength
  • 10.3 Range-Based Localization
  • 10.3.1 Triangulation
  • 10.3.2 Trilateration
  • 10.3.3 Iterative and Collaborative Multilateration
  • 10.3.4 GPS-Based Localization
  • 10.4 Range-Free Localization
  • 10.4.1 Ad Hoc Positioning System (APS)
  • 10.4.2 Approximate Point in Triangulation
  • 10.4.3 Localization Based on Multidimensional Scaling
  • 10.5 Event-Driven Localization
  • 10.5.1 The Lighthouse Approach
  • 10.5.2 Multi-Sequence Positioning
  • Exercises
  • References
  • 11 Security
  • 11.1 Fundamentals of Network Security
  • 11.2 Challenges of Security in Wireless Sensor Networks
  • 11.3 Security Attacks in Sensor Networks
  • 11.3.1 Denial-of-Service
  • 11.3.2 Attacks on Routing
  • 11.3.3 Attacks on Transport Layer
  • 11.3.4 Attacks on Data Aggregation
  • 11.3.5 Privacy Attacks
  • 11.4 Protocols and Mechanisms for Security
  • 11.4.1 Symmetric and Public Key Cryptography
  • 11.4.2 Key Management
  • 11.4.3 Defenses Against DoS Attacks
  • 11.4.4 Defenses Against Aggregation Attacks
  • 11.4.5 Defenses Against Routing Attacks
  • 11.4.6 Security Protocols for Sensor Networks
  • 11.4.7 TinySec
  • 11.4.8 Localized Encryption and Authentication Protocol
  • 11.5 IEEE 802.15.4 and ZigBee Security
  • 11.6 Summary
  • Exercises
  • References.
  • 12 Sensor Network Programming
  • 12.1 Challenges in Sensor Network Programming
  • 12.2 Node-Centric Programming
  • 12.2.1 nesC Language
  • 12.2.2 TinyGALS
  • 12.2.3 Sensor Network Application Construction Kit
  • 12.2.4 Thread-Based Model
  • 12.3 Macroprogramming
  • 12.3.1 Abstract Regions
  • 12.3.2 EnviroTrack
  • 12.3.3 Database Approaches
  • 12.4 Dynamic Reprogramming
  • 12.5 Sensor Network Simulators
  • 12.5.1 Network Simulator Tools and Environments
  • Exercises
  • References
  • Index.