Deep learning for natural language processing
Explore the most challenging issues of natural language processing, and learn how to solve them with cutting-edge deep learning! Deep learning has advanced natural language processing to exciting new levels and powerful new applications! For the first time, computer systems can achieve "human&q...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Shelter Island, New York :
Manning Publications Co. LLC
[2022]
|
Edición: | [First edition] |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009707504206719 |
Tabla de Contenidos:
- Intro
- Deep Learning for Natural Language Processing
- Copyright
- brief contents
- contents
- front matter
- preface
- acknowledgments
- about this book
- Who should read this book
- How this book is organized: A road map
- About the code
- liveBook discussion forum
- about the author
- about the cover illustration
- Part 1. Introduction
- 1 Deep learning for NLP
- 1.1 A selection of machine learning methods for NLP
- 1.1.1 The perceptron
- 1.1.2 Support vector machines
- 1.1.3 Memory-based learning
- 1.2 Deep learning
- 1.3 Vector representations of language
- 1.3.1 Representational vectors
- 1.3.2 Operational vectors
- 1.4 Vector sanitization
- 1.4.1 The hashing trick
- 1.4.2 Vector normalization
- Summary
- 2 Deep learning and language: The basics
- 2.1 Basic architectures of deep learning
- 2.1.1 Deep multilayer perceptrons
- 2.1.2 Two basic operators: Spatial and temporal
- 2.2 Deep learning and NLP: A new paradigm
- Summary
- 3 Text embeddings
- 3.1 Embeddings
- 3.1.1 Embedding by direct computation: Representational embeddings
- 3.1.2 Learning to embed: Procedural embeddings
- 3.2 From words to vectors: Word2Vec
- 3.3 From documents to vectors: Doc2Vec
- Summary
- Part 2. Deep NLP
- 4 Textual similarity
- 4.1 The problem
- 4.2 The data
- 4.2.1 Authorship attribution and verification data
- 4.3 Data representation
- 4.3.1 Segmenting documents
- 4.3.2 Word-level information
- 4.3.3 Subword-level information
- 4.4 Models for measuring similarity
- 4.4.1 Authorship attribution
- 4.4.2 Verifying authorship
- Summary
- 5 Sequential NLP
- 5.1 Memory and language
- 5.1.1 The problem: Question Answering
- 5.2 Data and data processing
- 5.3 Question Answering with sequential models
- 5.3.1 RNNs for Question Answering
- 5.3.2 LSTMs for Question Answering.
- 5.3.3 End-to-end memory networks for Question Answering
- Summary
- 6 Episodic memory for NLP
- 6.1 Memory networks for sequential NLP
- 6.2 Data and data processing
- 6.2.1 PP-attachment data
- 6.2.2 Dutch diminutive data
- 6.2.3 Spanish part-of-speech data
- 6.3 Strongly supervised memory networks: Experiments and results
- 6.3.1 PP-attachment
- 6.3.2 Dutch diminutives
- 6.3.3 Spanish part-of-speech tagging
- 6.4 Semi-supervised memory networks
- 6.4.1 Semi-supervised memory networks: Experiments and results
- Summary
- Part 3. Advanced topics
- 7 Attention
- 7.1 Neural attention
- 7.2 Data
- 7.3 Static attention: MLP
- 7.4 Temporal attention: LSTM
- 7.5 Experiments
- 7.5.1 MLP
- 7.5.2 LSTM
- Summary
- 8 Multitask learning
- 8.1 Introduction to multitask learning
- 8.2 Multitask learning
- 8.3 Multitask learning for consumer reviews: Yelp and Amazon
- 8.3.1 Data handling
- 8.3.2 Hard parameter sharing
- 8.3.3 Soft parameter sharing
- 8.3.4 Mixed parameter sharing
- 8.4 Multitask learning for Reuters topic classification
- 8.4.1 Data handling
- 8.4.2 Hard parameter sharing
- 8.4.3 Soft parameter sharing
- 8.4.4 Mixed parameter sharing
- 8.5 Multitask learning for part-of-speech tagging and named-entity recognition
- 8.5.1 Data handling
- 8.5.2 Hard parameter sharing
- 8.5.3 Soft parameter sharing
- 8.5.4 Mixed parameter sharing
- Summary
- 9 Transformers
- 9.1 BERT up close: Transformers
- 9.2 Transformer encoders
- 9.2.1 Positional encoding
- 9.3 Transformer decoders
- 9.4 BERT: Masked language modeling
- 9.4.1 Training BERT
- 9.4.2 Fine-tuning BERT
- 9.4.3 Beyond BERT
- Summary
- 10 Applications of Transformers: Hands-on with BERT
- 10.1 Introduction: Working with BERT in practice
- 10.2 A BERT layer
- 10.3 Training BERT on your data
- 10.4 Fine-tuning BERT
- 10.5 Inspecting BERT.
- 10.5.1 Homonyms in BERT
- 10.6 Applying BERT
- Summary
- bibliography
- index.