Silicon-germanium heterojunction bipolar transistors for mm-wave systems technology, modeling and circuit applications
The semiconductor industry is a fundamental building block of the new economy, there is no area of modern life untouched by the progress of nanoelectronics. The electronic chip is becomingan ever-increasing portion of system solutions, starting initially from less than 5% in the 1970 microcomputer e...
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Gistrup, Denmark ; Delft, Netherlands :
River Publishers
2018.
|
Edición: | 1st ed |
Colección: | River Publishers series in electronic materials and devices.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009703335106719 |
Tabla de Contenidos:
- Front Cover
- Half Title page
- RIVER PUBLISHERS SERIES IN ELECTRONIC MATERIALS AND DEVICES
- Title Page - Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems: Technology, Modeling and Circuit Applications
- Copyright page
- Contents
- Preface
- Acknowledgements
- List of Contributors
- List of Figures
- List of Tables
- List of Abbreviations
- Introduction
- Motivation and Objectives of the DOTSEVEN Project
- Approach toward Achieving the Ambitious Goals
- Overview of Results and Their Impact
- References
- Chapter 1 - SiGe HBT Technology
- 1.1 Introduction
- 1.2 HBT Performance Factors
- 1.3 HBT Device and Process Architectures Explored in the DOTSEVEN Project
- 1.3.1 Selective Epitaxial Growth of the Base
- 1.3.1.1 DPSA-SEG device architecture
- 1.3.1.2 Approaches to overcome limitations of the DPSA-SEG architecture
- 1.3.2 Non-selective Epitaxial Growth of the Base
- 1.4 Optimization of the Vertical Doping Profile
- 1.5 Optimization towards 700 GHz fMAX
- 1.6 Summary
- References
- Chapter 2 - Device Simulation
- 2.1 Numerical Simulation
- 2.2 Device Simulation
- 2.2.1 TCAD Device Optimization
- 2.2.2 Deterministic BTE Solvers
- 2.2.3 Drift-diffusion and Hydrodynamic Transport Models
- 2.2.4 Simulation Examples
- 2.2.4.1 DD simulation
- 2.2.4.2 HD simulation
- 2.2.4.3 Effects beyond DD and HD transport
- 2.2.4.4 Comparison with experimental data
- 2.3 Advanced Electro-thermal Simulation
- 2.3.1 Carrier-Phonon System in SiGe HBTs
- 2.3.2 Deterministic and Self-consistent Electrothermal Simulation Approach
- 2.3.3 Hot Phonon Effects in a Calibrated System
- 2.3.4 Thermal Resistance Extraction from the Simulated DC Characteristics
- 2.4 Microscopic Simulation of Hot-carrier Degradation
- 2.4.1 Physics of Hot-carrier Degradation
- 2.4.2 Modeling of Hot-carrier Effects.
- 2.4.3 Simulation of SiGe HBTs under Stress Conditions Close to the SOA Limit
- References
- Chapter 3 - SiGe HBT Compact Modeling
- 3.1 Introduction
- 3.2 Overview of HICUM Level 2
- 3.3 Modeling of the Quasi-Static Transfer Current
- 3.3.1 Basics of the GICCR
- 3.3.2 SiGe HBT Extensions
- 3.3.3 Temperature Dependence
- 3.4 Charge Storage
- 3.4.1 Critical Current
- 3.4.2 SiGe Heterojunction Barrier
- 3.5 Intra-Device Substrate Coupling
- 3.6 SiGe HBT Parameter Extraction
- 3.6.1 Extraction of Series Resistances
- 3.6.2 Extraction of the Transfer Current Parameters
- 3.6.3 Physics-Based Parameter Scaling
- 3.6.3.1 Standard geometry scaling equation
- 3.6.3.2 Generalized scaling equations
- 3.7 Compact Model Application to Experimental Data
- References
- Chapter 4 - (Sub)mm-wave Calibration
- 4.1 Introduction
- 4.2 Multi-mode Propagation and Calibration Transfer at mm-wave
- 4.2.1 Parallel Plate Waveguide Mode
- 4.2.2 Surface Wave Modes: TM0 and TE1
- 4.2.3 Electrically Thin Substrates
- 4.2.4 Calibration Transfer
- 4.3 Direct On-wafer Calibration
- 4.3.1 Characteristic Impedance Extraction of Transmission Lines
- 4.4 Direct DUT-plane Calibration
- 4.5 Conclusion
- References
- Chapter 5 - Reliability
- 5.1 Mixed-mode Stress Tests
- 5.1.1 Introduction to Hot-Carrier Degradation under MM Stress
- 5.1.2 Long-term MM Stress Characterization on IHP Devices
- 5.1.3 Medium-term MM Stress Characterization on IFX Devices
- 5.2 Long-term Stress Tests
- 5.2.1 Experimental Setup
- 5.2.2 Long-term Degradation Test Results
- 5.2.3 Low-frequency Noise Characterization
- 5.3 Compact Modeling of Hot-Carrier Degradation
- 5.3.1 Empirical Equations by IHP
- 5.3.2 HICUM-based Model
- 5.4 Thermal Effects
- 5.4.1 Experimental RTH Extraction
- 5.4.2 Thermal Simulation
- 5.4.3 Scaling Considerations
- References.
- Chapter 6 - Millimeter-wave Circuits and Applications
- 6.1 Millimeter-wave Benchmark Circuits and Building Blocks
- 6.1.1 Benchmark Circuits
- 6.1.2 Circuit Building Blocks
- 6.1.2.1 W-band low-noise amplifier (LNA) with 0.5 V supply voltage
- 6.1.2.2 W-band low-power frequency tripler
- 6.2 Millimeter-wave and Terahertz Systems
- 6.2.1 240 GHz SiGe Chipset
- 6.2.1.1 Wideband LO signal generation
- 6.2.1.2 Transmitter building blocks
- 6.2.1.3 Receiver building blocks
- 6.2.1.4 Antenna design
- 6.2.1.5 Packaging and high-speed PCB design
- 6.2.1.6 Tx and Rx characterization
- 6.2.1.7 Ultra-high data rate wireless communication
- 6.2.2 210-270 GHz Circularly Polarized Radar
- 6.2.3 0.5 THz Computed Tomography
- 6.2.3.1 Components
- 6.2.3.2 Detector design
- 6.2.3.3 THz-CT results
- References
- Chapter 7 - Future of SiGe HBT Technology and Its Applications
- 7.1 Introduction
- 7.2 Technology Comparison
- 7.3 Future Millimeter-wave and THz Applications
- 7.3.1 Communication
- 7.3.2 Radar
- 7.3.3 Imaging and Sensing
- References
- Index
- About the Editors
- Back Cover.