The MANTIS Book Cyber Physical System Based Proactive Collaborative Maintenance

In recent years, a considerable amount of effort has been devoted, both in industry and academia, to improving maintenance. Time is a critical factor in maintenance, and efforts are placed to monitor, analyze, and visualize machine or asset data in order to anticipate to any possible failure, preven...

Descripción completa

Detalles Bibliográficos
Otros Autores: Albano, Michele, editor (editor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Gistrup, Denmark : River Publishers [2019]
Edición:First edition
Colección:River Publishers series in automation, control and robotics.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009703334506719
Tabla de Contenidos:
  • Front Cover
  • Half Title Page
  • RIVER PUBLISHERS SERIES IN AUTOMATION, CONTROL AND ROBOTICS
  • Title Page
  • Copyright Page
  • Dedication Page
  • Contents
  • Acknowledgments
  • Foreword
  • List of Contributors
  • List of Figures
  • List of Tables
  • List of Abbreviations
  • Chapter 1 - Introduction
  • 1.1 Maintenance Today
  • 1.2 The Path to Proactive Maintenance
  • 1.3 Why to Read this Book
  • References
  • Chapter 2 - Business Drivers of a Collaborative, Proactive Maintenance Solution
  • 2.1 Introduction
  • 2.1.1 CBM-based PM in Industry
  • 2.1.2 CBM-based PM in Service Business
  • 2.1.3 Life Cycle Cost and Overall Equipment Effectiveness
  • 2.1.4 Integrating IoT with Old Equipment
  • 2.1.5 CBM Strategy as a Maintenance Business Driver
  • 2.2 Optimization of Maintenance Costs
  • 2.3 Business Drivers for Collaborative Proactive Maintenance
  • 2.3.1 Maintenance Optimisation Models
  • 2.3.2 Objectives and Scope
  • 2.3.3 Maintenance Standards
  • 2.3.4 Maintenance-related Operational Planning
  • 2.4 Economic View of CBM-based PM
  • 2.5 Risks in CBM Plan Implementation
  • 2.5.1 Technology
  • 2.5.2 People
  • 2.5.3 Processes
  • 2.5.4 Organizational Culture
  • References
  • Chapter 3 - The MANTIS Reference Architecture
  • 3.1 Introduction
  • 3.1.1 MANTIS Platform Architecture Overview
  • 3.2 The MANTIS Reference Architecture
  • 3.2.1 Related Work and Technologies
  • 3.2.1.1 Reference architecture for the industrial internet of things
  • 3.2.1.2 Data processing in Lambda
  • 3.2.1.3 Maintenance based on MIMOSA
  • 3.2.2 Architecture Model and Components
  • 3.2.2.1 Edge tier
  • 3.2.2.2 Platform tier
  • 3.2.2.3 Enterprise tier
  • 3.2.2.4 Multi stakeholder interactions
  • 3.3 Data Management
  • 3.3.1 Data Quality Considerations
  • 3.3.2 Utilization of Cloud Technologies
  • 3.3.3 Data Storages in MANTIS
  • 3.3.4 Storage Types
  • 3.3.4.1 Big data file systems.
  • 3.3.4.2 NoSQL databases
  • 3.4 Interoperability and Runtime System Properties
  • 3.4.1 Interoperability Reference Model
  • 3.4.2 MANTIS Interoperability Guidelines
  • 3.4.2.1 Conceptual and application integration
  • 3.4.2.2 System interaction model
  • 3.4.2.2.1 MANTIS event model
  • 3.4.2.2.2 Patterns for interactions
  • 3.4.2.3 Implementation integration
  • 3.5 Information Security Model
  • 3.5.1 Digital Identity
  • 3.5.2 Information Mo
  • 3.5.3 Control Access Policy Specification
  • 3.5.4 Additional Requirements
  • 3.6 Architecture Evaluation
  • 3.6.1 Architecture Evaluation Goals, Benefits and Activities
  • 3.6.2 Concepts and Definitions
  • 3.6.3 Architecture Evaluation Types
  • 3.7 Conclusions
  • References
  • Chapter 4 - Monitoring of Critical Assets
  • 4.1 The Industrial Environment
  • 4.1.1 Extreme High/Low Temperatures (Ovens, Turbines, Refrigeration Chambers etc.)
  • 4.1.2 High Pressure Environments (Pneumatic/Hydraulic Systems, Oil Conductions, Tires etc.)
  • 4.1.3 Nuclear Radiation (Reactors or Close and Near-By Areas)
  • 4.1.4 Abrasive or Poisonous Environments
  • 4.1.5 Presence of Explosive Substances or Gases
  • 4.1.6 Rotating or Moving Parts
  • 4.2 Industrial Sensor Characteristics
  • 4.2.1 Passive Wireless Sensors
  • 4.2.2 Low-Cost Sensor Solution Research
  • 4.2.3 Soft Sensor Computational Trust
  • 4.3 Bandwidth Optimization for Maintenance
  • 4.3.1 Reduced Data Amount and Key Process Indicators (KPI)
  • 4.3.2 Advanced Modulation Schemes
  • 4.3.3 EM Wave Polarization Diversity
  • 4.4 Wireless Communication in Challenging Environments
  • 4.4.1 Design Methodology Basis
  • 4.4.2 Requirement and Challenge Identification
  • 4.4.3 Channel Measurement
  • 4.4.4 Interference Detection and Characterization
  • 4.4.5 PHY Design/Selection and Implementation
  • 4.4.5.1 Single/multi carrier
  • 4.4.5.2 High performance/low power.
  • 4.4.6 MAC Design/Selection and Implementation
  • 4.4.6.1 Real-time/deterministic MACs
  • 4.4.6.2 Low-power MACs
  • 4.4.6.3 High level protocols for error mitigation
  • 4.4.7 System Validation
  • 4.4.7.1 Channel emulation
  • 4.4.7.2 Performance tests
  • 4.5 Intelligent Functions in the Sensors and Edge Servers
  • 4.5.1 Intelligent Function: Self-Calibration
  • 4.5.1.1 Practical application: Press machine torque sensor
  • 4.5.1.2 Practical application: X-ray tube cathode filament monitoring
  • 4.5.1.3 Practical application: Compressed air system
  • 4.5.2 Intelligent Function: Self-Testing (Self-Validating)
  • 4.5.2.1 Practical application: Oil tank system
  • 4.5.2.2 Practical application: Air and water flow and temperature sensor
  • 4.5.2.3 Practical application: Sensors for the photovoltaic plants
  • 4.5.3 Intelligent Function: Self-Diagnostics
  • 4.5.3.1 Practical application: Environmental parameters
  • 4.5.3.2 Practical application: Intelligent process performance indicator
  • 4.5.4 Smart Function: Formatting
  • 4.5.4.1 Practical applications: Compressed air system
  • 4.5.5 Smart Function: Enhancement
  • 4.5.5.1 Practical application: Air and water flow and temperature
  • 4.5.5.2 Practical application: Railway strain sensor
  • 4.5.5.3 Practical application: Conventional energy production
  • 4.5.6 Smart Function: Transformation
  • 4.5.6.1 Practical application: Pressure drop estimation
  • 4.5.7 Smart Function: Fusion
  • 4.5.7.1 Practical application: Off-road and special purpose vehicle
  • 4.5.7.2 Practical application: MR magnet monitoring (e-Alert sensor)
  • 4.5.7.3 Practical application: MR critical components
  • References
  • Chapter 5 - Providing Proactiveness: Data Analysis Techniques Portfolios
  • 5.1 Introduction
  • 5.2 Root Cause Failure Analysis
  • 5.2.1 Theoretical Background
  • 5.2.2 Techniques Catalogue
  • 5.2.2.1 Support vector machine.
  • 5.2.2.2 Limit and trend checking
  • 5.2.2.3 Partial least squares regression
  • 5.2.2.4 Bayesian network
  • 5.2.2.5 Artificial neural network
  • 5.2.2.6 K-means clustering
  • 5.2.2.7 Attribute oriented induction
  • 5.2.2.8 Hidden Markov model
  • 5.3 Remaining Useful Life Identification of Wearing Components
  • 5.3.1 Theoretical Background
  • 5.3.2 Techniques Catalogue
  • 5.3.3 Physical Modelling
  • 5.3.3.1 Industrial automation
  • 5.3.3.2 Fleet's maintenance
  • 5.3.3.3 Eolic systems
  • 5.3.3.4 Medical systems
  • 5.3.4 Artificial Neural Networks
  • 5.3.4.1 Deep neural networks
  • 5.3.5 Life Expectancy Models
  • 5.3.5.1 Time series analysis with attribute oriented induction
  • 5.3.5.2 Application to a pump
  • 5.3.5.3 Application to industrial forklifts
  • 5.3.5.4 Application to a gearbox
  • 5.3.6 Expert Systems
  • 5.4 Alerting and Prediction of Failures
  • 5.4.1 Theoretical Background
  • 5.4.2 Techniques Catalogue
  • 5.4.2.1 Nearest neighbour cold-deck imputation
  • 5.4.2.2 Support vector machine
  • 5.4.2.3 Linear discriminant analysis
  • 5.4.2.4 Pattern mining
  • 5.4.2.5 Temporal pattern mining
  • 5.4.2.6 Principal component analysis
  • 5.4.2.7 Hidden Semi-Markov model with Bayes classification
  • 5.4.2.8 Autoencoders
  • 5.4.2.9 Convolutional neural network with Gramian angular fields
  • 5.4.2.10 Recurrent neural network with long-short-term memory
  • 5.4.2.11 Change detection algorithm
  • 5.4.2.12 Fisher's exact test
  • 5.4.2.13 Bonferroni correction
  • 5.4.2.14 Hypothesis testing using univariate parametric statistics
  • 5.4.2.15 Hypothesis testing using univariate non-parametricstatistics
  • 5.4.2.16 Mean, thresholds, normality tests
  • 5.5 Examples
  • 5.5.1 Usage Patterns/k-means
  • 5.5.1.1 Data analysis
  • 5.5.1.2 Results
  • 5.5.1.2.1 Plotting
  • 5.5.1.2.2 Replicability of results
  • 5.5.1.2.3 Summary of results.
  • 5.5.2 Message Log Prediction Using LSTM
  • 5.5.2.1 Data interpretation and representation
  • 5.5.2.1.1 Litronic dataset
  • 5.5.2.1.2 Data representation
  • 5.5.2.2 Predictive models
  • 5.5.2.3 Results
  • 5.5.2.3.1 Evaluation of predictive models on small number of samples
  • 5.5.2.3.2 Evaluation of the ID-LSTM on OHE codes for more significant number of samples
  • 5.5.2.4 Discussion
  • 5.5.3 Metal-defect Classification
  • 5.5.3.1 Data collection
  • 5.5.3.2 Experiments
  • 5.5.3.3 Discussion
  • References
  • Chapter 6 - From KPI Dashboards to Advanced Visualization
  • 6.1 HMI Functional Specifications and Interaction Model
  • 6.1.1 HMI Design Principle Followed in the MANTIS Project
  • 6.1.2 MANTIS HMI Specifications
  • 6.1.2.1 Functional specifications
  • 6.1.2.2 General requirements
  • 6.1.3 MANTIS HMI Model
  • 6.1.3.1 Functionalities supporting high level tasks
  • 6.1.4 HMI Design Recommendations
  • 6.1.5 MANTIS Platform Interface Requirements
  • 6.1.5.1 Analysis of different interface types
  • 6.1.5.2 PC HMI
  • 6.1.6 Recommendations for Platform Selection
  • 6.1.6.1 Web-based HMI
  • 6.1.6.2 Responsive design
  • 6.1.7 Interface Design Recommendations for MANTIS Platform
  • 6.2 Adaptive Interfaces
  • 6.2.1 Context-awareness Approach
  • 6.2.1.1 Context and context awareness fundamentals
  • 6.2.1.2 Context lifecycle in context-aware applications
  • 6.2.1.3 Adaptive and intelligent HMIs
  • 6.2.1.4 Context awareness for fault prediction and maintenance optimisation
  • 6.2.1.5 Context awareness for maintenance personalisation and decision-making
  • 6.2.1.6 Context awareness approaches in a proactive collaborative maintenance platform
  • 6.2.2 Interaction Based/Driven Approach
  • 6.2.2.1 Introduction
  • 6.2.2.2 Navigation tracking and storage
  • 6.2.2.3 Action logs
  • 6.3 Advanced Data Visualizations for HMIs
  • 6.3.1 Visualization of Raw Data.
  • 6.3.1.1 Visualisation tools overview.