The digital shopfloor industrial automation in the industry 4.0 era : performance analysis and applications

In today’s competitive global environment, manufacturers are offered with unprecedented opportunities to build hyper-efficient and highly flexible plants, towards meeting variable market demand, while at the same time supporting new production models such as make-to-order (MTO), configure-to-order (...

Descripción completa

Detalles Bibliográficos
Otros Autores: Soldatos, John, editor (editor), Lazaro, Oscar, editor, Cavadini, Franco, editor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Gistrup, Denmark : River Publishers 2019.
Edición:1st ed
Colección:River Publishers series in automation, control and robotics.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009703334406719
Tabla de Contenidos:
  • Front Cover
  • Half Title
  • RIVER PUBLISHERS SERIES IN AUTOMATION, CONTROL AND ROBOTICS
  • Title Page - The Digital Shopfloor: Industrial Automation in the Industry 4.0 Era Performance Analysis and Applications
  • Copyright
  • Contents
  • Foreword
  • Preface
  • List of Contributors
  • List of Figures
  • List of Tables
  • List of Abbreviations
  • Chapter 1 - Introduction to Industry 4.0 and the Digital Shopfloor Vision
  • 1.1 Introduction
  • 1.2 Drivers and Main Use Cases
  • 1.3 The Digital Technologies Behind Industry 4.0
  • 1.4 Digital Automation Platforms and the Vision of the Digital Shopfloor
  • 1.4.1 Overview of Digital Automation Platforms
  • 1.4.2 Outlook Towards a Fully Digital Shopfloor
  • 1.5 Conclusion
  • References
  • PART I
  • Chapter 2 - Open Automation Framework for Cognitive Manufacturing
  • 2.1 Introduction
  • 2.2 State of the Play: Digital Manufacturing Platforms
  • 2.2.1 RAMI 4.0 (Reference Architecture Model Industry 4.0)
  • 2.2.2 Data-driven Digital Manufacturing Platforms for Industry 4.0
  • 2.2.3 International Data Spaces
  • 2.3 Autoware Framework for Digital Shopfloor Automation
  • 2.3.1 Digital Shopfloor Evolution: Trends &amp
  • Challenges
  • 2.3.1.1 Pillar 1: AUTOWARE open reference architecture for autonomous digital shopfloor
  • 2.3.1.2 Pillar 2: AUTOWARE digital abilities for automatic awareness in the autonomous digital shopfloor
  • 2.3.1.3 Pillar 3: AUTOWARE business value
  • 2.3.2 AUTOWARE Software-Defined Autonomous Service Platform
  • 2.3.2.1 Cloud &amp
  • Fog computing services enablers and context management
  • 2.3.3 AUTOWARE Framework and RAMI 4.0 Compliance
  • 2.4 Autoware Framework for Predictive Maintenance Platform Implementation
  • 2.4.1 Z-BRE4K: Zero-Unexpected-Breakdowns and Increased Operating Life of Factories
  • 2.4.2 Z-Bre4k Architecture Methodology
  • 2.4.3 Z-BRE4K General Architecture Structure.
  • 2.4.4 Z-BRE4K General Architecture Information Workflow
  • 2.4.5 Z-BRE4K General Architecture Component Distribution
  • 2.5 Conclusions
  • References
  • Chapter 3 - Reference Architecture for Factory Automation using Edge Computing and Blockchain Technologies
  • 3.1 FAR-EDGE Project Background
  • 3.2 FAR-EDGE Vision and Positioning
  • 3.3 State of the Art in Reference Architectures
  • 3.3.1 Generic Reference Architectures
  • 3.3.2 RAMI 4.0
  • 3.3.3 IIRA
  • 3.3.4 OpenFog RA
  • 3.4 FAR-EDGE Reference Architecture
  • 3.4.1 Functional Viewpoint
  • 3.4.1.1 Automation domain
  • 3.4.1.2 Analytics domain
  • 3.4.1.3 Simulation domain
  • 3.4.1.4 Crosscutting functions
  • 3.4.2 Structural Viewpoint
  • 3.4.2.1 Field Tier
  • 3.4.2.2 Gateway Tier
  • 3.4.2.3 Ledger Tier
  • 3.4.2.4 Cloud Tier
  • 3.5 Key Enabling Technologies for Decentralization
  • 3.5.1 Blockchain Issues
  • 3.5.2 Permissioned Blockchains
  • 3.5.3 The FAR-EDGE Ledger Tier
  • 3.5.4 Validation use Cases
  • 3.6 Conclusions
  • References
  • Chapter 4 - IEC-61499 Distributed Automation for the Next Generation of Manufacturing Systems
  • 4.1 Introduction
  • 4.2 Transition towards the Digital Manufacturing Paradigm: A Need of the Market
  • 4.3 Reasons for a New Engineering Paradigm in Automation
  • 4.3.1 Distribution of Intelligence is Useless without Appropriate Orchestration Mechanisms
  • 4.3.2 Defiance of Rigid Hierarchical Levels towards the Full Virtualization of the Automation Pyramid
  • 4.4 IEC-61499 Approach to Cyber-Physical Systems
  • 4.4.1 IEC-61499 runtime
  • 4.4.2 Functional Interfaces
  • 4.4.2.1 IEC-61499 interface
  • 4.4.2.2 Wireless interface
  • 4.4.2.3 Wrapping interface
  • 4.4.2.4 Service-oriented interface
  • 4.4.2.5 Fieldbus interface(s)
  • 4.4.2.6 Local I/O interface
  • 4.5 The "CPS-izer", a Transitional Path towards Full Adoption of IEC-61499
  • 4.6 Conclusions
  • References.
  • Chapter 5 - Communication and Data Management in Industry 4.0
  • 5.1 Introduction
  • 5.2 Industry 4.0 Communication and Data Requirements
  • 5.3 Industrial Wireless Network Architectures
  • 5.4 Data Management in Industrial Environments
  • 5.5 Hierarchical Communication and Data Management Architecture for Industry 4.0
  • 5.5.1 Heterogeneous Industrial Wireless Network
  • 5.5.2 Hierarchical Management
  • 5.5.2.1 Hierarchical communications
  • 5.5.2.2 Data management
  • 5.5.3 Multi-tier Organization
  • 5.5.4 Architectural Enablers: Virtualization and Softwarization
  • 5.5.4.1 RAN slicing
  • 5.5.4.2 Cloudification of the RAN
  • 5.6 Hybrid Communication Management
  • 5.7 Decentralized Data Distribution
  • 5.7.1 Average Data Access Latency Guarantees
  • 5.7.2 Maximum Data Access Latency Guarantees
  • 5.7.3 Dynamic Path Reconfigurations
  • 5.8 Communications and Data Management within the AUTOWARE Framework
  • 5.9 Conclusions
  • References
  • Chapter 6 - A Framework for Flexible and Programmable Data Analytics in Industrial Environments
  • 6.1 Introduction
  • 6.2 Requirements for Industrial-scale Data Analytics
  • 6.3 Distributed Data Analytics Architecture
  • 6.3.1 Data Routing and Preprocessing
  • 6.3.2 Edge Analytics Engine
  • 6.3.3 Distributed Ledger
  • 6.3.4 Distributed Analytics Engine (DA-Engine)
  • 6.3.5 Open API for Analytics
  • 6.4 Edge Analytics Engine
  • 6.4.1 EA-Engine Processors and Programmability
  • 6.4.2 EA-Engine Operation
  • 6.4.3 Configuring Analytics Workflows
  • 6.4.4 Extending the Processing Capabilities of the EA-Engine
  • 6.4.5 EA-Engine Configuration and Runtime Example
  • 6.5 Distributed Ledger and Data Analytics Engine
  • 6.5.1 Global Factory-wide Analytics and the DA-Engine
  • 6.5.2 Distributed Ledger Services in the FAR-EDGE Platform
  • 6.5.3 Distributed Ledger Services and DA-Engine.
  • 6.6 Practical Validation and Implementation
  • 6.6.1 Open-source Implementation
  • 6.6.2 Practical Validation
  • 6.6.2.1 Validation environment
  • 6.6.2.2 Edge analytics validation scenarios
  • 6.6.2.3 (Global) distributed analytics validation scenarios
  • 6.7 Conclusions
  • References
  • Chapter 7 - Model Predictive Control in Discrete Manufacturing Shopfloors
  • 7.1 Introduction
  • 7.1.1 Hybrid Model Predictive Control SDK
  • 7.1.2 Requirements
  • 7.1.3 Hybrid System
  • 7.1.4 Model Predictive Control
  • 7.2 Hybrid System Representation
  • 7.2.1 Piece-Wise Affine (PWA) System
  • 7.2.2 Mixed Logical Dynamical (MLD) System
  • 7.2.3 Equivalence of Hybrid Dynamical Models
  • 7.3 Hybrid Model Predictive Control
  • 7.3.1 State of the Art
  • 7.3.2 Key Factors
  • 7.3.3 Key Issues
  • 7.4 Identification of Hybrid Systems
  • 7.4.1 Problem Setting
  • 7.4.2 State-of-the-Art Analysis
  • 7.4.3 Recursive Two-Stage Clustering Approach
  • 7.4.4 Computation of the State Partition
  • 7.5 Integration of Additional Functionalities to the IEC 61499 Platform
  • 7.5.1 A Brief Introduction to the Basic Function Block
  • 7.5.2 A Brief Introduction to the Composite Function Block
  • 7.5.3 A Brief Introduction to the Service Interface Function Block
  • 7.5.4 The Generic DLL Function Block of nxtControl
  • 7.5.5 Exploiting the FB DLL Function Block as Interfacing Mechanism between IEC 61499 and External Custom Code
  • 7.6 Conclusions
  • References
  • Chapter 8 - Modular Human-Robot Applications in the Digital Shopfloor Based on IEC-61499
  • 8.1 Introduction
  • 8.2 Human and Robots in Manufacturing: Shifting the Paradigm from Co-Existence to Mutualism
  • 8.3 The "Mutualism Framework" Based on IEC-61499
  • 8.3.1 "Orchestrated Lean Automation": Merging IEC-61499 with the Toyota Philosophy
  • 8.3.2 A Hybrid Team of Symbionts for Bidirectional Mutualistic Compensation.
  • 8.3.3 Three-Dimensional Characterization of Symbionts' Capabilities
  • 8.3.4 Machine Learning Applied to Guarantee Dynamic Adherence of Models to Reality
  • 8.4 Technological Approach to the Implementation of Mutualism
  • 8.4.1 "Mutualism Framework" to Sustain Implementation of Symbionts-Enhanced Manufacturing Processes
  • 8.4.2 IEC-61499 Engineering Tool-Chain for the Design and Deployment of Real-Time Orchestrated Symbionts
  • 8.4.3 AI-Based Semantic Planning and Scheduling of Orchestrated Symbionts' Tasks
  • 8.4.4 Modular Platform for Perceptual Learning and Augmentation of Human Symbionts
  • 8.4.5 Training Gymnasium for Progressive Adaptation andPerformance Improvement of Symbionts' Mutualistic Behaviours
  • 8.5 The Potential to Improve Productivity and the Impact this Could Have on European Manufacturing
  • 8.6 Conclusions
  • References
  • PART II
  • Chapter 9 - Digital Models for Industrial Automation Platforms
  • 9.1 Introduction
  • 9.2 Scope and Use of Digital Models for Automation
  • 9.2.1 Scope of Digital Models
  • 9.2.2 Factory and Plant Information Modelling
  • 9.2.3 Automation and Analytics Processes Modelling
  • 9.2.4 Automation and Analytics Platforms Configuration
  • 9.2.5 Cyber and Physical Worlds Synchronization
  • 9.2.6 Dynamic Access to Plant Information
  • 9.3 Review of Standards Based Digital Models
  • 9.3.1 Overview
  • 9.3.2 IEC 62264
  • 9.3.3 IEC 62769 (FDI)
  • 9.3.4 IEC 62453 (FDT)
  • 9.3.5 IEC 61512 (Batch Control)
  • 9.3.6 IEC 61424 (CAEX)
  • 9.3.7 Business to Manufacturing Markup Language (B2MML)
  • 9.3.8 AutomationML
  • 9.4 FAR-EDGE Digital Models Outline
  • 9.4.1 Scope of Digital Modelling in FAR-EDGE
  • 9.4.2 Main Entities of Digital Models for Data Analytics
  • 9.4.3 Hierarchical Structure
  • 9.4.4 Model Repository Open Source Implementation
  • 9.5 Simulation and Analytics Models Linking and Interoperability.
  • 9.6 Conclusions.