Modeling and control of modern electrical energy systems
In Modeling and Control of Modern Electrical Energy Systems, distinguished researcher Dr. Masoud Karimi-Ghartemani delivers a comprehensive discussion of distributed and renewable energy resource integration from a control system perspective. The book explores various practical aspects of these syst...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Piscataway, New Jersey ; Hoboken, New Jersey :
IEEE Press
[2022]
|
Colección: | IEEE Press series on power engineering.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009701334606719 |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Author Biography
- Preface
- Acknowledgments
- Acronyms
- Symbols
- Introduction
- Part I Power Electronic Conversion
- Chapter 1 Power Electronics
- 1.1 Power Electronics Based Conversion
- 1.1.1 Advantages of Power Electronics
- 1.2 Power Electronic Switches
- 1.3 Types of Power Electronic Converters
- 1.4 Applications of Power Electronics in Power Engineering
- 1.4.1 Power Quality Applications
- 1.4.2 Power System Applications
- 1.4.3 Rectifiers and Motor Drive Applications
- 1.4.4 Backup Supply and Distributed Generation Applications
- 1.5 Summary and Conclusion
- Exercises
- Problems
- Reference
- Chapter 2 Standard Power Electronic Converters
- 2.1 Standard Buck Converter
- 2.1.1 Analysis of Operation
- 2.1.2 Switching Model
- 2.1.3 Average (or Control) Model
- 2.1.3.1 Current Control Model
- 2.1.3.2 Output Voltage Control Model
- 2.1.3.3 Input Voltage Control Model
- 2.1.4 Steady‐State Analysis
- 2.1.5 Sensitivity Analysis
- 2.1.5.1 Sensitivity to R
- 2.1.5.2 Sensitivity to vB
- 2.1.5.3 Sensitivity to vA
- 2.1.6 Virtual Resistance Feedback
- 2.1.7 Input Feedback Linearization
- 2.2 Standard Boost Converter
- 2.2.1 Analysis of Operation
- 2.2.2 Steady‐State Analysis
- 2.2.3 Switching Model
- 2.2.4 Average (or Control) Model
- 2.2.4.1 Current Control Model
- 2.2.4.2 Input Voltage Control
- 2.2.4.3 Output Voltage Control
- 2.3 Standard Inverting Buck‐Boost Converter*
- 2.3.1 Analysis of Operation
- 2.3.2 Steady‐State Analysis
- 2.3.3 Switching Model
- 2.3.4 Average (or Control) Model
- 2.3.4.1 Current Control Model
- 2.4 Standard Four‐Switch Buck‐Boost Converter*
- 2.4.1 Analysis of Operation
- 2.4.2 Steady‐State Analysis
- 2.4.3 Switching Model
- 2.4.4 Average (or Control) Model
- 2.4.4.1 Current Control Model.
- 2.5 Standard Bidirectional Converter
- 2.6 Single‐Phase Half‐Bridge VSC
- 2.6.1 Analysis of Operation
- 2.6.2 Switching Model
- 2.6.3 Average (or Control) Model
- 2.6.4 Sensitivity Analysis and Role of Feedback
- 2.6.4.1 Sensitivity to R
- 2.6.5 Synchronized Sampling
- 2.7 Full‐Bridge VSC
- 2.7.1 Bipolar PWM Operation
- 2.7.2 Unipolar PWM Operation
- 2.8 Three‐Phase VSC
- 2.8.1 Modeling in Stationary Domain
- 2.8.2 Modeling in Rotating Synchronous Frame
- 2.8.3 Compact Modeling Using Complex Transfer Functions*
- 2.9 Modeling of Converter Delays
- 2.10 Summary and Conclusion
- Exercises
- Problems
- References
- Part II Feedback Control Systems
- Chapter 3 Frequency‐Domain (Transfer Function) Approach
- 3.1 Key Concepts
- 3.1.1 Transfer Function
- 3.1.1.1 Differential Equation
- 3.1.1.2 Definition of Zeros and Poles of a TF or an LTI System
- 3.1.1.3 Partial Fraction Expansion (PFE)
- 3.1.2 Stability
- 3.1.3 Disturbance
- 3.1.4 Uncertainty
- 3.1.5 Statement of Control Problem
- 3.2 Open‐Loop Control
- 3.3 Closed‐Loop (or Feedback) Control
- 3.3.1 Feedback Philosophy
- 3.3.2 Stability Margins
- 3.3.2.1 Case I: Proportional Control C(s)&
- equals
- Kp
- 3.3.2.2 Case II: Proportional‐Derivative Control C(s)&
- equals
- K(s+z)&
- equals
- Kds+Kp
- 3.3.2.3 Case III: Proportional‐Integrating Control C(s)&
- equals
- Ks+zs&
- equals
- Kp+Kis
- 3.3.2.4 Case IV: PID Control C(s)&
- equals
- K(s+z1)(s+z2)s&
- equals
- Kds+Kp+Kis
- 3.4 Some Feedback Loop Properties
- 3.4.1 Removal of Steady‐State Error
- 3.4.2 Pole Location and Transient Response
- 3.5 Summary and Conclusion
- Problems
- Chapter 4 Time‐Domain (State Space) Approach
- 4.1 State Space Representation and Properties
- 4.1.1 Relationship between SS and TF
- 4.1.2 Facts
- 4.2 State Feedback.
- 4.2.1 Concept of Controllability
- 4.2.2 Concept of Stabilizability
- 4.2.3 Removing Steady‐State Error
- 4.2.4 Challenges with State Feedback Method
- 4.3 State Estimator
- 4.3.1 How to Choose the Estimator's Poles?
- 4.3.2 Separation Property
- 4.3.3 Conditions for Existence of Estimator Gain H
- 4.3.4 Concept of Observability
- 4.3.5 Concept of Detectability
- 4.4 Optimal Control
- 4.4.1 Linear Quadratic Regulator (LQR)
- 4.4.2 Linear Quadratic Tracker (LQT)
- 4.4.2.1 LQT Without Direct Output Feedback
- 4.4.2.2 Robust LQT with Direct Output Feedback
- 4.4.2.3 Elementary Design Approach (Unstable!)
- 4.4.2.4 LQT Design for Step Commands and Step Disturbances
- 4.4.2.5 LQT Design for Sinusoidal References and Disturbances
- 4.5 Summary and Conclusion
- Problems
- References
- Part III Distributed Energy Resources (DERs)
- Chapter 5 Direct‐Current (dc) DERs
- 5.1 Introduction
- 5.1.1 System Description
- 5.1.2 General Statement of Control Objectives
- 5.2 Overview of a Solar PV Conversion System
- 5.2.1 Photovoltaic Effect and Solar Cell
- 5.2.2 General PV Converter Structures
- 5.3 Power Control via Current Feedback Loop
- 5.3.1 Control Objectives
- 5.3.2 Control Approach
- 5.3.2.1 Robust Tracking and Current Limiting
- 5.3.2.2 Soft Start Control
- 5.3.3 Design of Feedback Gains Using TF Approach
- 5.3.4 LQT Approach and Design
- 5.3.5 Control Design Requirements for Current Limiting
- 5.4 Grid Voltage Support
- 5.4.1 Explanation on Concept of Inertia
- 5.4.2 Conflict of Inertia Response and Current Limiting
- 5.4.3 Inertia Response Using Capacitor Emulation
- 5.4.4 Full State Feedback of Power Loop
- 5.4.5 Static Grid Voltage Support (Droop Function)
- 5.4.6 Inertia Power Using Grid Voltage Differentiation
- 5.4.7 Common Approach: Nested Control Loops
- 5.5 Analysis of Weak Grid Condition.
- 5.6 Load Voltage Control
- 5.6.1 Control Structure and Optimal Design
- 5.6.2 Current Limiting
- 5.7 Grid‐Forming Converter Controls
- 5.7.1 Grid‐Forming Control Without a dc‐Side Capacitor
- 5.7.2 Grid‐Forming Controller with a dc‐Side Capacitor
- 5.7.2.1 Full State Feedback
- 5.8 Control Scenarios in a PV Converter
- 5.8.1 PV Voltage Control
- 5.8.2 MPPT via PV Voltage Control
- 5.8.3 Mathematical Modeling of MPPT Algorithm
- 5.8.3.1 Calculation of ddvpvppv: Method 1
- 5.8.3.2 Calculation of ddvpvppv: Method 2
- 5.8.4 PV Power Control
- 5.9 LCL Filter*
- 5.9.1 Passive Damping of Resonance Mode
- 5.9.2 Full‐State Feedback with Active Damping
- 5.9.3 Delay Compensation Technique Using LQT Approach
- 5.10 Summary and Conclusion
- Problems
- References
- Chapter 6 Single‐Phase Alternating‐Current (ac) DERs
- 6.1 Power Balance in a dc/ac System
- 6.1.1 Power Decoupling
- 6.2 Power Control Method via Current Feedback Loop (CFL)
- 6.2.1 Input Linearization and Feedforward Compensation
- 6.2.2 Control Structure
- 6.2.3 Calculating and Limiting Reference Current
- 6.2.4 Single‐Phase ePLL
- 6.2.4.1 Linear Analysis of ePLL
- 6.2.4.2 Two Modifications to the ePLL
- 6.2.5 Controller Formulation and LQT Design
- 6.2.6 Impact of Grid Voltage Harmonics
- 6.2.7 Harmonics and dc Control Units
- 6.2.8 Weak Grid Condition and PLL Impact*
- 6.2.8.1 Short‐Circuit Ratio (SCR)
- 6.2.8.2 LTI Model of Reference Current Generation
- 6.2.8.3 Controller and Its Design
- 6.3 Grid‐Supportive Controls
- 6.3.1 Static (or Steady‐State) Support
- 6.3.2 Dynamic (or Inertia) Support
- 6.3.3 Power Controller with Grid Support
- 6.3.4 Virtual Synchronous Machine (VSM)
- 6.3.4.1 Stability Analysis and Design of VSM
- 6.3.4.2 Start‐up Synchronization
- 6.3.4.3 Grid‐Connection Synchronization
- 6.4 dc Voltage Control and Support.
- 6.4.1 System Modeling
- 6.4.2 Control Structure and Design
- 6.4.3 Removing 2‐f Ripples from Control Loop*
- 6.4.3.1 Notch Filtering Method
- 6.4.3.2 Direct Ripple Cancellation Method
- 6.4.4 Obtaining Inertia from Capacitor*
- 6.4.4.1 Non‐VSM Approach
- 6.4.4.2 VSM Approach
- 6.5 Load Voltage Control and Support
- 6.5.1 Direct Voltage Control Approach
- 6.5.2 Voltage Control Loop with Current Limiting
- 6.5.3 Deriving Grid‐Forming Controllers
- 6.5.3.1 Power Droops Strategy
- 6.5.3.2 Swing Equation Strategy (VSM Approach)
- 6.5.3.3 Analogy Between the Two Approaches
- 6.5.3.4 Damping Strategies
- 6.5.4 Discussion
- 6.6 DERs in a Hybrid ac/dc Network
- 6.7 Summary and Conclusion
- Problems
- References
- Chapter 7 Three‐Phase DERs
- 7.1 Introduction
- 7.1.1 Symmetrical Components
- 7.1.2 Powers in a Three‐Phase System
- 7.1.2.1 Balanced Situation
- 7.1.2.2 Unbalanced Situation
- 7.1.3 Space Phasor Concept and Notation
- 7.1.3.1 Space Phasor of a Positive‐Sequence Signal
- 7.1.3.2 Space Phasor of a Negative‐Sequence Waveform
- 7.1.3.3 Power Definitions and Expressions Using Space Phasor
- 7.2 Three‐Phase PLL
- 7.2.1 SRF‐PLL
- 7.2.1.1 Principles of Operation
- 7.2.1.2 Approximate Linear Analysis and Design
- 7.2.1.3 Alternative Presentations
- 7.2.2 Three‐Phase Enhanced PLL (ePLL)
- 7.2.2.1 Basic ePLL Structure
- 7.2.2.2 Analysis of Basic ePLL
- 7.2.3 ePLL with Negative‐Sequence Estimation
- 7.2.4 ePLL with Negative‐seq and dc Estimation
- 7.3 Vector Current Control in Stationary Domain
- 7.3.1 Controller Structure
- 7.3.2 Current Reference Generation and Limiting
- 7.3.2.1 Balanced Current
- 7.3.2.2 Unbalanced Current
- 7.3.3 Harmonics, Higher‐Order Filters, System Delays
- 7.3.4 Weak Grid Conditions and Including PLL in Controller*
- 7.4 Vector Current Control in Synchronous Reference Frame.
- 7.4.1 Control Structure.