Elementary scattering theory for X-ray and neutron users

The opportunities for doing scattering experiments at synchrotron and neutron facilities have grown rapidly in recent years and are set to continue to do so into the foreseeable future. This text provides a basic understanding of how these techniques enable the structure and dynamics of materials to...

Descripción completa

Detalles Bibliográficos
Autor principal: Sivia, D. S. (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Oxford, England ; New York : Oxford University Press c2011.
Edición:1st ed
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009689905606719
Tabla de Contenidos:
  • Cover; Contents; I: Some preliminaries; 1 Studying matter at the atomic and molecular level; 1.1 Length scales and logarithmic axes; 1.2 Resolution, magnification and microscopy; 1.3 Structure, dynamics and spectroscopy; 1.4 Atomic building blocks and interactions; 1.5 Energy, length and temperature scales; 1.6 A table of useful constants; 2 Waves, complex numbers and Fourier transforms; 2.1 Sinusoidal waves; 2.2 Complex numbers; 2.3 Fourier series; 2.4 Fourier transforms; 2.5 Fourier optics and physical insight; 2.6 Fourier data analysis; 2.7 A list of useful formulae; II: Elastic scattering
  • 3 The basics of X-ray and neutron scattering3.1 An idealized scattering experiment; 3.2 Scattering by a single fixed atom; 3.3 Scattering from an assembly of atoms; 3.4 X-rays and synchrotron sources; 3.5 Reactors and pulsed neutron sources; 4 Surfaces, interfaces and reflectivity; 4.1 Reflectivity and Fourier transforms; 4.2 Reflectivity and geometrical optics; 4.3 X-rays, neutrons and other techniques; 5 Small-angle scattering and the big picture; 5.1 Diffraction and length scales; 5.2 Size, shape and molecular form factors; 5.3 Assemblies and correlations; 5.4 Pair-distribution function
  • 5.5 Contrast matching6 Liquids and amorphous materials; 6.1 The middle phase of matter; 6.2 Radial distribution functions; 6.3 Structure factors; 6.4 Comparison with small-angle scattering; 6.5 The Placzek correction; 7 Periodicity, symmetry and crystallography; 7.1 Repetitive structures and Bragg peaks; 7.2 Patterns and symmetries; 7.3 Circumventing the phase problem; 7.4 Powdered samples; 7.5 Magnetic structures; III: Inelastic scattering; 8 Energy exchange and dynamical information; 8.1 Experimental considerations; 8.2 Scattering from time-varying structures
  • 8.3 A quantum transitions approach9 Examples of inelastic scattering; 9.1 Compton scattering; 9.2 Lattice vibrations; 9.3 Molecular spectroscopy; A: Discrete Fourier transforms; B: Resonant scattering and absorption; References; Index; A; B; C; D; E; F; G; H; I; J; K; L; M; N; O; P; Q; R; S; T; U; V; W; X; Y