Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries 7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Virtual Event, September 27, 2021, Revised Selected Papers, Part I

This two-volume set LNCS 12962 and 12963 constitutes the thoroughly refereed proceedings of the 7th International MICCAI Brainlesion Workshop, BrainLes 2021, as well as the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge, the Federated Tumor Segmentation (FeTS) Challenge, the Cross-Modal...

Descripción completa

Detalles Bibliográficos
Otros Autores: Crimi, Alessandro (Editor), Crimi, Alessandro. editor (editor), Bakas, Spyridon. editor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cham Springer Nature 2022
Cham : 2022.
Edición:1st ed. 2022.
Colección:Lecture Notes in Computer Science, 12962
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009673536006719
Tabla de Contenidos:
  • Supervoxel Merging towards Brain Tumor Segmentation
  • Challenging Current Semi-Supervised Anomaly Segmentation Methods for Brain MRI
  • Modeling multi-annotator uncertainty as multi-class segmentation problem
  • Modeling multi-annotator uncertainty as multi-class segmentation problem
  • Adaptive unsupervised learning with enhanced feature representation for intra-tumor partitioning and survival prediction for glioblastoma
  • Predicting isocitrate dehydrogenase mutation status in glioma using structural brain networks and graph neural networks
  • Optimization of Deep Learning based Brain Extraction in MRI for Low Resource Environments. Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task
  • Unet3D with Multiple Atrous Convolutions Attention Block for Brain Tumor Segmentation
  • BRATS2021: exploring each sequence in multi-modal input for baseline U-net performance
  • Automatic Brain Tumor Segmentation using Multi-scale Features and Attention Mechanism
  • Simple and Fast Convolutional Neural Network applied to median cross sections for predicting the presence of MGMT promoter methylation in FLAIR MRI scans
  • MSViT: Multi Scale Vision Transformer forBiomedical Image Segmentation
  • Unsupervised Multimodal
  • HarDNet-BTS: A Harmonic Shortcut Network for Brain Tumor Segmentation
  • Multimodal Brain Tumor Segmentation Algorithm
  • Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images
  • Multi-plane UNet++ Ensemble for Glioblastoma Segmentation
  • Multimodal Brain Tumor Segmentation using Modified UNet Architecture
  • A video data based transfer learning approach for classification of MGMT status in brain tumor MR images
  • Multimodal Brain Tumor Segmentation Using a 3D ResUNet in BraTS 2021
  • 3D MRI brain tumour segmentation with autoencoder regularization and Hausdorff distance loss function
  • 3D CMM-Net with Deeper Encoder for Semantic Segmentation of Brain Tumors in BraTS2021 Challenge
  • Cascaded training pipeline for 3D brain tumor segmentation
  • nnU-Net with Region-based Training and Loss Ensembles for Brain Tumor Segmentation
  • Brain Tumor Segmentation Using Attention Activated U-Net with Positive Mining
  • Automatic segmentation of brain tumor using 3D convolutional neural networks
  • Hierarchical and Global Modality Interaction for Brain Tumor Segmentation
  • Ensemble Outperforms Single Models in Brain Tumor Segmentation
  • Brain Tumor Segmentation using UNet-Context Encoding Network
  • Ensemble CNN Networks for GBM Tumors Segmentation using Multi-parametric MRI.