Principles of system identification theory and practice

Master Techniques and Successfully Build Models Using a Single Resource Vital to all data-driven or measurement-based process operations, system identification is an interface that is based on observational science, and centers on developing mathematical models from observed data. Principles of Syst...

Descripción completa

Detalles Bibliográficos
Otros Autores: Tangirala, Arun K., 1974- author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Boca Raton, FL : CRC Press, an imprint of Taylor and Francis 2014.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009672603206719
Tabla de Contenidos:
  • Introduction
  • A journey into identification
  • Mathematical descriptions of processes: models
  • Models for discrete-time LTI systems
  • Transform-domain models for linear Time-invariant systems
  • Sampling and discretization
  • Random processes
  • Time-domain analysis: correlation functions
  • Models for linear stationary processes
  • Fourier analysis and spectral analysis of deterministic signals
  • Spectral representations of random processes
  • Introduction to estimation
  • Goodness of estimators
  • Estimation methods: part I
  • Estimation methods: part II
  • Estimation of signal properties
  • Non-parametric and parametric models for identification
  • Predictions
  • Identification of parametric time-series models
  • Identification of non-parametric input-output models
  • Identification of parametric input-output models
  • Statistical and practical elements of model building
  • Identification of state-space models
  • Case studies
  • Advanced topics in SISO identification
  • Linear multivariable identification.