A generalization of Bohr-Mollerup's theorem for higher order convex functions

In 1922, Harald Bohr and Johannes Mollerup established a remarkable characterization of the Euler gamma function using its log-convexity property. A decade later, Emil Artin investigated this result and used it to derive the basic properties of the gamma function using elementary methods of the calc...

Descripción completa

Detalles Bibliográficos
Autor principal: Marichal, Jean-Luc (-)
Otros Autores: Zenaïdi, Naïm
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cham Springer Nature 2022
Cham : 2022.
Colección:Developments in mathematics 70.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009670630206719
Tabla de Contenidos:
  • Preface List of main symbols Table of contents Chapter 1. Introduction Chapter 2. Preliminaries Chapter 3. Uniqueness and existence results Chapter 4. Interpretations of the asymptotic conditions Chapter 5. Multiple log-gamma type functions Chapter 6. Asymptotic analysis Chapter 7. Derivatives of multiple log-gamma type functions Chapter 8. Further results Chapter 9. Summary of the main results Chapter 10. Applications to some standard special functions Chapter 11. Defining new log-gamma type functions Chapter 12. Further examples Chapter 13. Conclusion A. Higher order convexity properties B. On Krull-Webster's asymptotic condition C. On a question raised by Webster D. Asymptotic behaviors and bracketing E. Generalized Webster's inequality F. On the differentiability of \sigma_g Bibliography Analogues of properties of the gamma function Index