Beginning data science in R 4 data analysis, visualization, and modelling for the data scientist

Discover best practices for data analysis and software development in R and start on the path to becoming a fully-fledged data scientist. Updated for the R 4.0 release, this book teaches you techniques for both data manipulation and visualization and shows you the best way for developing new softwar...

Descripción completa

Detalles Bibliográficos
Otros Autores: Mailund, Thomas, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: New York, NY : Apress Media, LLC [2022]
Edición:Second edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009668677006719
Tabla de Contenidos:
  • 1: Introduction 2: Introduction to R Programming 3: Reproducible Analysis 4: Data Manipulation 5: Visualizing Data 6: Working with Large Data Sets 7: Supervised Learning 8: Unsupervised Learning 9: Project 1: Hitting the Bottle 10: Deeper into R Programming 11: Working with Vectors and Lists 12: Functional Programming 13: Object-Oriented Programming 14: Building an R Package 15: Testing and Package Checking 16: Version Control 17: Profiling and Optimizing 18: Project 2: Bayesian Linear Progression 19: Conclusions