Designing indoor solar products photovoltaic technologies for AES

Photovoltaic technology - or the direct conversion of light into electricity - is the fastest growing means of electricity generation today, however it is generally used outdoors. Relatively little attention has been focused on the many obstacles to overcome when designing efficient indoor products....

Descripción completa

Detalles Bibliográficos
Autor principal: Randall, Julian F. (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, N.J. : J. Wiley & Sons c2005.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009665119006719
Tabla de Contenidos:
  • DESIGNING INDOOR SOLAR PRODUCTS; Contents; About the Author; Preface; Acknowledgements; Introduction; 1 State of the Art; 1.1 Introduction; 1.2 Low-power Energy Sources; 1.3 Intellectual Property Rights; 1.3.1 Methodology; 1.3.2 Results; 1.3.3 Conclusion; 1.4 IPV Taxonomies; 1.4.1 Product Use Taxonomy; 1.4.2 Function (or Circuit) Taxonomy; 1.4.3 Radiant Energy Application Taxonomy; 1.4.4 Mean Energy Taxonomy; 1.5 IPV Gaps in Knowledge; 1.5.1 Radiant Energy Available; 1.5.2 PV Solar Cells; 1.5.3 Charge Storage; 1.5.4 Energy Source Guidelines; 1.5.5 Applications; 1.6 Conclusion
  • 2 Engineering Design2.1 Introduction; 2.2 Defining Design; 2.3 Trends in Engineering Design; 2.4 Life Cycle Methods; 2.4.1 Introduction; 2.4.2 Definition; 2.4.3 LCA for IPV Designers; 2.4.4 LCA in IPV Design; 2.4.5 Designer Responsibility; 2.4.6 Summary; 2.5 Conclusion; 3 Radiant Energy Indoors; 3.1 Introduction; 3.2 Physics of Buildings; 3.2.1 Radiant Energy; 3.2.2 Radiant Energy Spectra; 3.2.3 Basic Optical Parameters; 3.3 Photometric Characterisation; 3.3.1 Characterisation Methodology Issues; 3.3.2 Daylight Factor; 3.3.3 Nearby Obstacle Aspect Ratio; 3.3.4 Glazing/Floor Ratio
  • 3.3.5 Lighting Recommendations3.4 Radiometric Characterisations; 3.4.1 Obstacles; 3.4.2 Window Transmission; 3.4.3 IPV Location; 3.4.4 IPV Cell Orientation; 3.4.5 Further Profiles: Buildings, Users and Applications; 3.5 Computer Simulation; 3.6 Discussion; 3.6.1 Summary of Parameters; 3.6.2 IPV Designer Recommendations; 3.7 Conclusion; 3.8 Future Work; 3.9 Further Reading; 4 Fundamentals of Solar Cells; 4.1 Introduction; 4.2 Brief History of Solar Collectors and PV; 4.2.1 The 'Selenium Years'; 4.2.2 The 'Silicon Years'; 4.2.3 History of IPV; 4.2.4 IPV Today; 4.3 Photonic Semiconductors
  • 4.3.1 What is a Semiconductor?4.3.2 Photonic Semiconductor Properties; 4.3.3 Solar Cell Categories; 4.4 Photovoltaic Technology; 4.4.1 Electrical Efficiency Calculation; 4.4.2 Fill Factor; 4.4.3 Short-circuit Current; 4.4.4 Open-circuit Voltage; 4.4.5 Power Curve; 4.5 Suboptimal Solar Cell Efficiency; 4.5.1 Optical Issues; 4.5.2 Material Quality Issues; 4.5.3 Parasitic Resistance; 4.5.4 Efficiency Losses Summary; 4.6 IPV Material Technologies; 4.6.1 Spectral Response; 4.6.2 Amorphous Silicon Thin Film; 4.6.3 Polycrystalline Thin Film; 4.6.4 Conventional Silicon Cell
  • 4.6.5 Other PV Technologies4.6.6 Thin-film Modules; 4.7 Efficiency Improvements; 4.7.1 Current and I(SC); 4.7.2 Voltage and V(OC); 4.7.3 Fill Factor; 4.7.4 Concentration; 4.8 Conclusion; 4.9 Further Reading; 5 Solar Cells for Indoor Use; 5.1 Introduction; 5.2 Technology Performance at Indoor Light Levels; 5.2.1 Experimental Procedure; 5.2.2 Results; 5.2.3 Efficiency with Intensity; 5.2.4 Spectral Response; 5.3 Indoor Light Level Model Presentation; 5.3.1 Phenomenological Model; 5.3.2 Heuristic Model; 5.3.3 Technology-specific Models; 5.4 Discussion; 5.5 Designing PV Modules for Indoor Use
  • 5.5.1 Transparent Conductive Oxide