Inverse synthetic aperture radar imaging with MATLAB algorithms with advanced sar/isar imaging concepts, algorithms, and matlab codes

Detalles Bibliográficos
Otros Autores: Özdemir, Caner, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, New Jersey : Wiley [2021]
Edición:Second edition
Colección:Wiley series in microwave and optical engineering.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009661629906719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Preface to the Second Edition
  • Acknowledgments
  • Acronyms
  • Chapter 1 Basics of Fourier Analysis
  • 1.1 Forward and Inverse Fourier Transform
  • 1.1.1 Brief History of FT
  • 1.1.2 Forward FT Operation
  • 1.1.3 IFT
  • 1.2 FT Rules and Pairs
  • 1.2.1 Linearity
  • 1.2.2 Time Shifting
  • 1.2.3 Frequency Shifting
  • 1.2.4 Scaling
  • 1.2.5 Duality
  • 1.2.6 Time Reversal
  • 1.2.7 Conjugation
  • 1.2.8 Multiplication
  • 1.2.9 Convolution
  • 1.2.10 Modulation
  • 1.2.11 Derivation and Integration
  • 1.2.12 Parseval's Relationship
  • 1.3 Time-Frequency Representation of a Signal
  • 1.3.1 Signal in the Time Domain
  • 1.3.2 Signal in the Frequency Domain
  • 1.3.3 Signal in the Joint Time-Frequency (JTF) Plane
  • 1.4 Convolution and Multiplication Using FT
  • 1.5 Filtering/Windowing
  • 1.6 Data Sampling
  • 1.7 DFT and FFT
  • 1.7.1 DFT
  • 1.7.2 FFT
  • 1.7.3 Bandwidth and Resolutions
  • 1.8 Aliasing
  • 1.9 Importance of FT in Radar Imaging
  • 1.10 Effect of Aliasing in Radar Imaging
  • 1.11 Matlab Codes
  • References
  • Chapter 2 Radar Fundamentals
  • 2.1 Electromagnetic Scattering
  • 2.2 Scattering from PECs
  • 2.3 Radar Cross Section
  • 2.3.1 Definition of RCS
  • 2.3.2 RCS of Simple-Shaped Objects
  • 2.3.3 RCS of Complex-Shaped Objects
  • 2.4 Radar Range Equation
  • 2.4.1 Bistatic Case
  • 2.4.2 Monostatic Case
  • 2.5 Range of Radar Detection
  • 2.5.1 Signal-to-Noise Ratio
  • 2.6 Radar Waveforms
  • 2.6.1 Continuous Wave
  • 2.6.2 Frequency-Modulated Continuous Wave
  • 2.6.3 Stepped-Frequency Continuous Wave
  • 2.6.4 Short Pulse
  • 2.6.5 Chirp (LFM) Pulse
  • 2.7 Pulsed Radar
  • 2.7.1 Pulse Repetition Frequency
  • 2.7.2 Maximum Range and Range Ambiguity
  • 2.7.3 Doppler Frequency
  • 2.8 Matlab Codes
  • References
  • Chapter 3 Synthetic Aperture Radar
  • 3.1 SAR Modes
  • 3.2 SAR System Design.
  • 3.3 Resolutions in SAR
  • 3.4 SAR Image Formation
  • 3.5 Range Compression
  • 3.5.1 Matched Filter
  • 3.5.1.1 Computing Matched Filter Output via Fourier Processing
  • 3.5.1.2 Example for Matched Filtering
  • 3.5.2 Ambiguity Function
  • 3.5.2.1 Relation to Matched Filter
  • 3.5.2.2 Ideal Ambiguity Function
  • 3.5.2.3 Rectangular-Pulse Ambiguity Function
  • 3.5.2.4 LFM-Pulse Ambiguity Function
  • 3.5.3 Pulse Compression
  • 3.5.3.1 Detailed Processing of Pulse Compression
  • 3.5.3.2 Bandwidth, Resolution, and Compression Issues for LFM Signal
  • 3.5.3.3 Pulse Compression Example
  • 3.6 Azimuth Compression
  • 3.6.1 Processing in Azimuth
  • 3.6.2 Azimuth Resolution
  • 3.6.3 Relation to ISAR
  • 3.7 SAR Imaging
  • 3.8 SAR Focusing Algorithms
  • 3.8.1 RDA
  • 3.8.1.1 Range Compression in RDA
  • 3.8.1.2 Azimuth Fourier Transform
  • 3.8.1.3 Range Cell Migration Correction
  • 3.8.1.4 Azimuth Compression
  • 3.8.1.5 Simulated SAR Imaging Example
  • 3.8.1.6 Drawbacks of RDA
  • 3.8.2 Chirp Scaling Algorithm
  • 3.8.3 The ω-kA
  • 3.8.4 Back-Projection Algorithm
  • 3.9 Example of a Real SAR Imagery
  • 3.10 Problems in SAR Imaging
  • 3.10.1 Range Migration and Range Walk
  • 3.10.2 Motion Errors
  • 3.10.3 Speckle Noise
  • 3.11 Advanced Topics in SAR
  • 3.11.1 SAR Interferometry
  • 3.11.2 SAR Polarimetry
  • 3.12 Matlab Codes
  • References
  • Chapter 4 Inverse Synthetic Aperture Radar Imaging and Its Basic Concepts
  • 4.1 SAR versus ISAR
  • 4.2 The Relation of Scattered Field to the Image Function in ISAR
  • 4.3 One-Dimensional (1D) Range Profile
  • 4.4 1D Cross-Range Profile
  • 4.5 Two-Dimensional (2D) ISAR Image Formation (Small Bandwidth, Small Angle)
  • 4.5.1 Resolutions in ISAR
  • 4.5.1.1 Range Resolution
  • 4.5.1.2 Cross-Range Resolution:
  • 4.5.2 Range and Cross-Range Extends
  • 4.5.3 Imaging Multibounces in ISAR
  • 4.5.4 Sample Design Procedure for ISAR.
  • 4.5.4.1 ISAR Design Example #1: "Aircraft Target
  • 4.5.4.2 ISAR Design Example #2: "Military Tank Target
  • 4.6 2D ISAR Image Formation (Wide Bandwidth, Large Angles)
  • 4.6.1 Direct Integration
  • 4.6.2 Polar Reformatting
  • 4.7 3D ISAR Image Formation
  • 4.7.1 Range and Cross-Range resolutions
  • 4.7.2 A Design Example for 3D ISAR
  • 4.8 Matlab Codes
  • References
  • Chapter 5 Imaging Issues in Inverse Synthetic Aperture Radar
  • 5.1 Fourier-Related Issues
  • 5.1.1 DFT Revisited
  • 5.1.2 Positive and Negative Frequencies in DFT
  • 5.2 Image Aliasing
  • 5.3 Polar Reformatting Revisited
  • 5.3.1 Nearest Neighbor Interpolation
  • 5.3.2 Bilinear Interpolation
  • 5.4 Zero Padding
  • 5.5 Point Spread Function
  • 5.6 Windowing
  • 5.6.1 Common Windowing Functions
  • 5.6.1.1 Rectangular Window
  • 5.6.1.2 Triangular Window
  • 5.6.1.3 Hanning Window
  • 5.6.1.4 Hamming Window
  • 5.6.1.5 Kaiser Window
  • 5.6.1.6 Blackman Window
  • 5.6.1.7 Chebyshev Window
  • 5.6.2 ISAR Image Smoothing via Windowing
  • 5.7 Matlab Codes
  • References
  • Chapter 6 Range-Doppler Inverse Synthetic Aperture Radar Processing
  • 6.1 Scenarios for ISAR
  • 6.1.1 Imaging Aerial Targets via Ground-Based Radar
  • 6.1.2 Imaging Ground/Sea Targets via Aerial Radar
  • 6.2 ISAR Waveforms for Range-Doppler Processing
  • 6.2.1 Chirp Pulse Train
  • 6.2.2 Stepped Frequency Pulse Train
  • 6.3 Doppler Shift's Relation to Cross-Range
  • 6.3.1 Doppler Frequency Shift Resolution
  • 6.3.2 Resolving Doppler Shift and Cross-Range
  • 6.4 Forming the Range-Doppler Image
  • 6.5 ISAR Receiver
  • 6.5.1 ISAR Receiver for Chirp Pulse Radar
  • 6.5.2 ISAR Receiver for SFCW Radar
  • 6.6 Quadrature Detection
  • 6.6.1 I-Channel Processing
  • 6.6.2 Q-Channel Processing
  • 6.7 Range Alignment
  • 6.8 Defining the Range-Doppler ISAR Imaging Parameters
  • 6.8.1 Image Frame Dimension (Image Extends).
  • 6.8.2 Range and Cross-Range Resolution
  • 6.8.3 Frequency Bandwidth and the Center Frequency
  • 6.8.4 Doppler Frequency Bandwidth
  • 6.8.5 Pulse Repetition Frequency
  • 6.8.6 Coherent Integration (Dwell) Time
  • 6.8.7 Pulse Width
  • 6.9 Example of Chirp Pulse-Based Range-Doppler ISAR Imaging
  • 6.10 Example of SFCW-Based Range-Doppler ISAR Imaging
  • 6.11 Matlab Codes
  • References
  • Chapter 7 Scattering Center Representation of Inverse Synthetic Aperture Radar
  • 7.1 Scattering/Radiation Center Model
  • 7.2 Extraction of Scattering Centers
  • 7.2.1 Image Domain Formulation
  • 7.2.1.1 Extraction in the Image Domain: The "CLEAN" Algorithm
  • 7.2.1.2 Reconstruction in the Image Domain
  • 7.2.2 Fourier Domain Formulation
  • 7.2.2.1 Extraction in the Fourier Domain
  • 7.2.2.2 Reconstruction in the Fourier Domain
  • 7.3 Matlab Codes
  • References
  • Chapter 8 Motion Compensation for Inverse Synthetic Aperture Radar
  • 8.1 Doppler Effect Due to Target Motion
  • 8.2 Standard MOCOMP Procedures
  • 8.2.1 Translational MOCOMP
  • 8.2.1.1 Range Tracking
  • 8.2.1.2 Doppler Tracking
  • 8.2.2 Rotational MOCOMP
  • 8.3 Popular ISAR MOCOMP Techniques
  • 8.3.1 Cross-Correlation Method
  • 8.3.1.1 Example for the Cross-Correlation Method
  • 8.3.2 Minimum Entropy Method
  • 8.3.2.1 Definition of Entropy in ISAR Images
  • 8.3.2.2 Example for the Minimum Entropy Method
  • 8.3.3 JTF-Based MOCOMP
  • 8.3.3.1 Received Signal from a Moving Target
  • 8.3.3.2 An Algorithm for JTF-Based Rotational MOCOMP
  • 8.3.3.3 Example for JTF-Based Rotational MOCOMP
  • 8.3.4 Algorithm for JTF-Based Translational and Rotational MOCOMP
  • 8.3.4.1 A Numerical Example
  • 8.4 Matlab Codes
  • References
  • Chapter 9 Bistatic ISAR Imaging
  • 9.1 Why Bi-ISAR Imaging?
  • 9.2 Geometry for Bi-Isar Imaging and the Algorithm
  • 9.2.1 Bi-ISAR Imaging Algorithm for a Point Scatterer.
  • 9.2.2 Bistatic ISAR Imaging Algorithm for a Target
  • 9.3 Resolutions in Bistatic ISAR
  • 9.3.1 Range Resolution
  • 9.3.2 Cross-Range Resolution
  • 9.3.3 Range and Cross-Range Extends
  • 9.4 Design Procedure for Bi-ISAR Imaging
  • 9.5 Bi-Isar Imaging Examples
  • 9.5.1 Bi-ISAR Design Example #1
  • 9.5.2 Bi-ISAR Design Example #2
  • 9.6 Mu-ISAR Imaging
  • 9.6.1 Challenges in Mu-ISAR Imaging
  • 9.6.2 Mu-ISAR Imaging Example
  • 9.7 Matlab Codes
  • References
  • Chapter 10 Polarimetric ISAR Imaging
  • 10.1 Polarization of an Electromagnetic Wave
  • 10.1.1 Polarization Type
  • 10.1.2 Polarization Sensitivity
  • 10.1.3 Polarization in Radar Systems
  • 10.2 Polarization Scattering Matrix
  • 10.2.1 Relation to RCS
  • 10.2.2 Polarization Characteristics of the Scattered Wave
  • 10.2.3 Polarimetric Decompositions of EM Wave Scattering
  • 10.2.4 The Pauli Decomposition
  • 10.2.4.1 Description of Pauli Decomposition
  • 10.2.4.2 Interpretation of Pauli Decomposition
  • 10.2.4.3 Polarimetric Image Representation Using Pauli Decomposition
  • 10.3 Why Polarimetric ISAR Imaging?
  • 10.4 ISAR Imaging with Full Polarization
  • 10.4.1 ISAR Data in LP Basis
  • 10.4.2 ISAR Data in CP Basis
  • 10.5 Polarimetric ISAR Images
  • 10.5.1 Pol-ISAR Image of a Benchmark Target
  • 10.5.1.1 The "SLICY" Target
  • 10.5.1.2 Fully Polarimetric EM Simulation of SLICY
  • 10.5.1.3 LP Pol-ISAR Images of SLICY
  • 10.5.1.4 CP Pol-ISAR Images of SLICY
  • 10.5.1.5 Pauli Decomposition Image of SLICY
  • 10.5.2 Pol-ISAR Image of a Complex Target
  • 10.5.2.1 The "Military Tank" Target
  • 10.5.2.2 Fully Polarimetric EM Simulation of "Tank" Target
  • 10.5.2.3 LP Pol-ISAR Images of "Tank" Target
  • 10.5.2.4 CP Pol-ISAR Images of "Tank" Target
  • 10.5.2.5 Pauli Decomposition Image of "Tank" Target
  • 10.6 Feature Extraction from Polarimetric Images
  • 10.7 Matlab Codes
  • References.
  • Chapter 11 Near-Field ISAR Imaging.