Inverse synthetic aperture radar imaging with MATLAB algorithms with advanced sar/isar imaging concepts, algorithms, and matlab codes
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
Wiley
[2021]
|
Edición: | Second edition |
Colección: | Wiley series in microwave and optical engineering.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009661629906719 |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright Page
- Contents
- Preface to the Second Edition
- Acknowledgments
- Acronyms
- Chapter 1 Basics of Fourier Analysis
- 1.1 Forward and Inverse Fourier Transform
- 1.1.1 Brief History of FT
- 1.1.2 Forward FT Operation
- 1.1.3 IFT
- 1.2 FT Rules and Pairs
- 1.2.1 Linearity
- 1.2.2 Time Shifting
- 1.2.3 Frequency Shifting
- 1.2.4 Scaling
- 1.2.5 Duality
- 1.2.6 Time Reversal
- 1.2.7 Conjugation
- 1.2.8 Multiplication
- 1.2.9 Convolution
- 1.2.10 Modulation
- 1.2.11 Derivation and Integration
- 1.2.12 Parseval's Relationship
- 1.3 Time-Frequency Representation of a Signal
- 1.3.1 Signal in the Time Domain
- 1.3.2 Signal in the Frequency Domain
- 1.3.3 Signal in the Joint Time-Frequency (JTF) Plane
- 1.4 Convolution and Multiplication Using FT
- 1.5 Filtering/Windowing
- 1.6 Data Sampling
- 1.7 DFT and FFT
- 1.7.1 DFT
- 1.7.2 FFT
- 1.7.3 Bandwidth and Resolutions
- 1.8 Aliasing
- 1.9 Importance of FT in Radar Imaging
- 1.10 Effect of Aliasing in Radar Imaging
- 1.11 Matlab Codes
- References
- Chapter 2 Radar Fundamentals
- 2.1 Electromagnetic Scattering
- 2.2 Scattering from PECs
- 2.3 Radar Cross Section
- 2.3.1 Definition of RCS
- 2.3.2 RCS of Simple-Shaped Objects
- 2.3.3 RCS of Complex-Shaped Objects
- 2.4 Radar Range Equation
- 2.4.1 Bistatic Case
- 2.4.2 Monostatic Case
- 2.5 Range of Radar Detection
- 2.5.1 Signal-to-Noise Ratio
- 2.6 Radar Waveforms
- 2.6.1 Continuous Wave
- 2.6.2 Frequency-Modulated Continuous Wave
- 2.6.3 Stepped-Frequency Continuous Wave
- 2.6.4 Short Pulse
- 2.6.5 Chirp (LFM) Pulse
- 2.7 Pulsed Radar
- 2.7.1 Pulse Repetition Frequency
- 2.7.2 Maximum Range and Range Ambiguity
- 2.7.3 Doppler Frequency
- 2.8 Matlab Codes
- References
- Chapter 3 Synthetic Aperture Radar
- 3.1 SAR Modes
- 3.2 SAR System Design.
- 3.3 Resolutions in SAR
- 3.4 SAR Image Formation
- 3.5 Range Compression
- 3.5.1 Matched Filter
- 3.5.1.1 Computing Matched Filter Output via Fourier Processing
- 3.5.1.2 Example for Matched Filtering
- 3.5.2 Ambiguity Function
- 3.5.2.1 Relation to Matched Filter
- 3.5.2.2 Ideal Ambiguity Function
- 3.5.2.3 Rectangular-Pulse Ambiguity Function
- 3.5.2.4 LFM-Pulse Ambiguity Function
- 3.5.3 Pulse Compression
- 3.5.3.1 Detailed Processing of Pulse Compression
- 3.5.3.2 Bandwidth, Resolution, and Compression Issues for LFM Signal
- 3.5.3.3 Pulse Compression Example
- 3.6 Azimuth Compression
- 3.6.1 Processing in Azimuth
- 3.6.2 Azimuth Resolution
- 3.6.3 Relation to ISAR
- 3.7 SAR Imaging
- 3.8 SAR Focusing Algorithms
- 3.8.1 RDA
- 3.8.1.1 Range Compression in RDA
- 3.8.1.2 Azimuth Fourier Transform
- 3.8.1.3 Range Cell Migration Correction
- 3.8.1.4 Azimuth Compression
- 3.8.1.5 Simulated SAR Imaging Example
- 3.8.1.6 Drawbacks of RDA
- 3.8.2 Chirp Scaling Algorithm
- 3.8.3 The ω-kA
- 3.8.4 Back-Projection Algorithm
- 3.9 Example of a Real SAR Imagery
- 3.10 Problems in SAR Imaging
- 3.10.1 Range Migration and Range Walk
- 3.10.2 Motion Errors
- 3.10.3 Speckle Noise
- 3.11 Advanced Topics in SAR
- 3.11.1 SAR Interferometry
- 3.11.2 SAR Polarimetry
- 3.12 Matlab Codes
- References
- Chapter 4 Inverse Synthetic Aperture Radar Imaging and Its Basic Concepts
- 4.1 SAR versus ISAR
- 4.2 The Relation of Scattered Field to the Image Function in ISAR
- 4.3 One-Dimensional (1D) Range Profile
- 4.4 1D Cross-Range Profile
- 4.5 Two-Dimensional (2D) ISAR Image Formation (Small Bandwidth, Small Angle)
- 4.5.1 Resolutions in ISAR
- 4.5.1.1 Range Resolution
- 4.5.1.2 Cross-Range Resolution:
- 4.5.2 Range and Cross-Range Extends
- 4.5.3 Imaging Multibounces in ISAR
- 4.5.4 Sample Design Procedure for ISAR.
- 4.5.4.1 ISAR Design Example #1: "Aircraft Target
- 4.5.4.2 ISAR Design Example #2: "Military Tank Target
- 4.6 2D ISAR Image Formation (Wide Bandwidth, Large Angles)
- 4.6.1 Direct Integration
- 4.6.2 Polar Reformatting
- 4.7 3D ISAR Image Formation
- 4.7.1 Range and Cross-Range resolutions
- 4.7.2 A Design Example for 3D ISAR
- 4.8 Matlab Codes
- References
- Chapter 5 Imaging Issues in Inverse Synthetic Aperture Radar
- 5.1 Fourier-Related Issues
- 5.1.1 DFT Revisited
- 5.1.2 Positive and Negative Frequencies in DFT
- 5.2 Image Aliasing
- 5.3 Polar Reformatting Revisited
- 5.3.1 Nearest Neighbor Interpolation
- 5.3.2 Bilinear Interpolation
- 5.4 Zero Padding
- 5.5 Point Spread Function
- 5.6 Windowing
- 5.6.1 Common Windowing Functions
- 5.6.1.1 Rectangular Window
- 5.6.1.2 Triangular Window
- 5.6.1.3 Hanning Window
- 5.6.1.4 Hamming Window
- 5.6.1.5 Kaiser Window
- 5.6.1.6 Blackman Window
- 5.6.1.7 Chebyshev Window
- 5.6.2 ISAR Image Smoothing via Windowing
- 5.7 Matlab Codes
- References
- Chapter 6 Range-Doppler Inverse Synthetic Aperture Radar Processing
- 6.1 Scenarios for ISAR
- 6.1.1 Imaging Aerial Targets via Ground-Based Radar
- 6.1.2 Imaging Ground/Sea Targets via Aerial Radar
- 6.2 ISAR Waveforms for Range-Doppler Processing
- 6.2.1 Chirp Pulse Train
- 6.2.2 Stepped Frequency Pulse Train
- 6.3 Doppler Shift's Relation to Cross-Range
- 6.3.1 Doppler Frequency Shift Resolution
- 6.3.2 Resolving Doppler Shift and Cross-Range
- 6.4 Forming the Range-Doppler Image
- 6.5 ISAR Receiver
- 6.5.1 ISAR Receiver for Chirp Pulse Radar
- 6.5.2 ISAR Receiver for SFCW Radar
- 6.6 Quadrature Detection
- 6.6.1 I-Channel Processing
- 6.6.2 Q-Channel Processing
- 6.7 Range Alignment
- 6.8 Defining the Range-Doppler ISAR Imaging Parameters
- 6.8.1 Image Frame Dimension (Image Extends).
- 6.8.2 Range and Cross-Range Resolution
- 6.8.3 Frequency Bandwidth and the Center Frequency
- 6.8.4 Doppler Frequency Bandwidth
- 6.8.5 Pulse Repetition Frequency
- 6.8.6 Coherent Integration (Dwell) Time
- 6.8.7 Pulse Width
- 6.9 Example of Chirp Pulse-Based Range-Doppler ISAR Imaging
- 6.10 Example of SFCW-Based Range-Doppler ISAR Imaging
- 6.11 Matlab Codes
- References
- Chapter 7 Scattering Center Representation of Inverse Synthetic Aperture Radar
- 7.1 Scattering/Radiation Center Model
- 7.2 Extraction of Scattering Centers
- 7.2.1 Image Domain Formulation
- 7.2.1.1 Extraction in the Image Domain: The "CLEAN" Algorithm
- 7.2.1.2 Reconstruction in the Image Domain
- 7.2.2 Fourier Domain Formulation
- 7.2.2.1 Extraction in the Fourier Domain
- 7.2.2.2 Reconstruction in the Fourier Domain
- 7.3 Matlab Codes
- References
- Chapter 8 Motion Compensation for Inverse Synthetic Aperture Radar
- 8.1 Doppler Effect Due to Target Motion
- 8.2 Standard MOCOMP Procedures
- 8.2.1 Translational MOCOMP
- 8.2.1.1 Range Tracking
- 8.2.1.2 Doppler Tracking
- 8.2.2 Rotational MOCOMP
- 8.3 Popular ISAR MOCOMP Techniques
- 8.3.1 Cross-Correlation Method
- 8.3.1.1 Example for the Cross-Correlation Method
- 8.3.2 Minimum Entropy Method
- 8.3.2.1 Definition of Entropy in ISAR Images
- 8.3.2.2 Example for the Minimum Entropy Method
- 8.3.3 JTF-Based MOCOMP
- 8.3.3.1 Received Signal from a Moving Target
- 8.3.3.2 An Algorithm for JTF-Based Rotational MOCOMP
- 8.3.3.3 Example for JTF-Based Rotational MOCOMP
- 8.3.4 Algorithm for JTF-Based Translational and Rotational MOCOMP
- 8.3.4.1 A Numerical Example
- 8.4 Matlab Codes
- References
- Chapter 9 Bistatic ISAR Imaging
- 9.1 Why Bi-ISAR Imaging?
- 9.2 Geometry for Bi-Isar Imaging and the Algorithm
- 9.2.1 Bi-ISAR Imaging Algorithm for a Point Scatterer.
- 9.2.2 Bistatic ISAR Imaging Algorithm for a Target
- 9.3 Resolutions in Bistatic ISAR
- 9.3.1 Range Resolution
- 9.3.2 Cross-Range Resolution
- 9.3.3 Range and Cross-Range Extends
- 9.4 Design Procedure for Bi-ISAR Imaging
- 9.5 Bi-Isar Imaging Examples
- 9.5.1 Bi-ISAR Design Example #1
- 9.5.2 Bi-ISAR Design Example #2
- 9.6 Mu-ISAR Imaging
- 9.6.1 Challenges in Mu-ISAR Imaging
- 9.6.2 Mu-ISAR Imaging Example
- 9.7 Matlab Codes
- References
- Chapter 10 Polarimetric ISAR Imaging
- 10.1 Polarization of an Electromagnetic Wave
- 10.1.1 Polarization Type
- 10.1.2 Polarization Sensitivity
- 10.1.3 Polarization in Radar Systems
- 10.2 Polarization Scattering Matrix
- 10.2.1 Relation to RCS
- 10.2.2 Polarization Characteristics of the Scattered Wave
- 10.2.3 Polarimetric Decompositions of EM Wave Scattering
- 10.2.4 The Pauli Decomposition
- 10.2.4.1 Description of Pauli Decomposition
- 10.2.4.2 Interpretation of Pauli Decomposition
- 10.2.4.3 Polarimetric Image Representation Using Pauli Decomposition
- 10.3 Why Polarimetric ISAR Imaging?
- 10.4 ISAR Imaging with Full Polarization
- 10.4.1 ISAR Data in LP Basis
- 10.4.2 ISAR Data in CP Basis
- 10.5 Polarimetric ISAR Images
- 10.5.1 Pol-ISAR Image of a Benchmark Target
- 10.5.1.1 The "SLICY" Target
- 10.5.1.2 Fully Polarimetric EM Simulation of SLICY
- 10.5.1.3 LP Pol-ISAR Images of SLICY
- 10.5.1.4 CP Pol-ISAR Images of SLICY
- 10.5.1.5 Pauli Decomposition Image of SLICY
- 10.5.2 Pol-ISAR Image of a Complex Target
- 10.5.2.1 The "Military Tank" Target
- 10.5.2.2 Fully Polarimetric EM Simulation of "Tank" Target
- 10.5.2.3 LP Pol-ISAR Images of "Tank" Target
- 10.5.2.4 CP Pol-ISAR Images of "Tank" Target
- 10.5.2.5 Pauli Decomposition Image of "Tank" Target
- 10.6 Feature Extraction from Polarimetric Images
- 10.7 Matlab Codes
- References.
- Chapter 11 Near-Field ISAR Imaging.