Nonlinear filters theory and applications
"This book fills the gap between the literature on nonlinear filters and nonlinear observers by presenting a new state estimation strategy, the smooth variable structure filter (SVSF). The book is a valuable resource to researchers outside of the control society, where literature on nonlinear o...
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
John Wiley & Sons, Inc
[2022]
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009657537606719 |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- List of Figures
- List of Table
- Preface
- Acknowledgments
- Acronyms
- Chapter 1 Introduction
- 1.1 State of a Dynamic System
- 1.2 State Estimation
- 1.3 Construals of Computing
- 1.4 Statistical Modeling
- 1.5 Vision for the Book
- Chapter 2 Observability
- 2.1 Introduction
- 2.2 State‐Space Model
- 2.3 The Concept of Observability
- 2.4 Observability of Linear Time‐Invariant Systems
- 2.4.1 Continuous‐Time LTI Systems
- 2.4.2 Discrete‐Time LTI Systems
- 2.4.3 Discretization of LTI Systems
- 2.5 Observability of Linear Time‐Varying Systems
- 2.5.1 Continuous‐Time LTV Systems
- 2.5.2 Discrete‐Time LTV Systems
- 2.5.3 Discretization of LTV Systems
- 2.6 Observability of Nonlinear Systems
- 2.6.1 Continuous‐Time Nonlinear Systems
- 2.6.2 Discrete‐Time Nonlinear Systems
- 2.6.3 Discretization of Nonlinear Systems
- 2.7 Observability of Stochastic Systems
- 2.8 Degree of Observability
- 2.9 Invertibility
- 2.10 Concluding Remarks
- Chapter 3 Observers
- 3.1 Introduction
- 3.2 Luenberger Observer
- 3.3 Extended Luenberger‐Type Observer
- 3.4 Sliding‐Mode Observer
- 3.5 Unknown‐Input Observer
- 3.6 Concluding Remarks
- Chapter 4 Bayesian Paradigm and Optimal Nonlinear Filtering
- 4.1 Introduction
- 4.2 Bayes' Rule
- 4.3 Optimal Nonlinear Filtering
- 4.4 Fisher Information
- 4.5 Posterior Cramér-Rao Lower Bound
- 4.6 Concluding Remarks
- Chapter 5 Kalman Filter
- 5.1 Introduction
- 5.2 Kalman Filter
- 5.3 Kalman Smoother
- 5.4 Information Filter
- 5.5 Extended Kalman Filter
- 5.6 Extended Information Filter
- 5.7 Divided‐Difference Filter
- 5.8 Unscented Kalman Filter
- 5.9 Cubature Kalman Filter
- 5.10 Generalized PID Filter
- 5.11 Gaussian‐Sum Filter
- 5.12 Applications
- 5.12.1 Information Fusion
- 5.12.2 Augmented Reality.
- 5.12.3 Urban Traffic Network
- 5.12.4 Cybersecurity of Power Systems
- 5.12.5 Incidence of Influenza
- 5.12.6 COVID‐19 Pandemic
- 5.13 Concluding Remarks
- Chapter 6 Particle Filter
- 6.1 Introduction
- 6.2 Monte Carlo Method
- 6.3 Importance Sampling
- 6.4 Sequential Importance Sampling
- 6.5 Resampling
- 6.6 Sample Impoverishment
- 6.7 Choosing the Proposal Distribution
- 6.8 Generic Particle Filter
- 6.9 Applications
- 6.9.1 Simultaneous Localization and Mapping
- 6.10 Concluding Remarks
- Chapter 7 Smooth Variable‐Structure Filter
- 7.1 Introduction
- 7.2 The Switching Gain
- 7.3 Stability Analysis
- 7.4 Smoothing Subspace
- 7.5 Filter Corrective Term for Linear Systems
- 7.6 Filter Corrective Term for Nonlinear Systems
- 7.7 Bias Compensation
- 7.8 The Secondary Performance Indicator
- 7.9 Second‐Order Smooth Variable Structure Filter
- 7.10 Optimal Smoothing Boundary Design
- 7.11 Combination of SVSF with Other Filters
- 7.12 Applications
- 7.12.1 Multiple Target Tracking
- 7.12.2 Battery State‐of‐Charge Estimation
- 7.12.3 Robotics
- 7.13 Concluding Remarks
- Chapter 8 Deep Learning
- 8.1 Introduction
- 8.2 Gradient Descent
- 8.3 Stochastic Gradient Descent
- 8.4 Natural Gradient Descent
- 8.5 Neural Networks
- 8.6 Backpropagation
- 8.7 Backpropagation Through Time
- 8.8 Regularization
- 8.9 Initialization
- 8.10 Convolutional Neural Network
- 8.11 Long Short‐Term Memory
- 8.12 Hebbian Learning
- 8.13 Gibbs Sampling
- 8.14 Boltzmann Machine
- 8.15 Autoencoder
- 8.16 Generative Adversarial Network
- 8.17 Transformer
- 8.18 Concluding Remarks
- Chapter 9 Deep Learning‐Based Filters
- 9.1 Introduction
- 9.2 Variational Inference
- 9.3 Amortized Variational Inference
- 9.4 Deep Kalman Filter
- 9.5 Backpropagation Kalman Filter
- 9.6 Differentiable Particle Filter.
- 9.7 Deep Rao-Blackwellized Particle Filter
- 9.8 Deep Variational Bayes Filter
- 9.9 Kalman Variational Autoencoder
- 9.10 Deep Variational Information Bottleneck
- 9.11 Wasserstein Distributionally Robust Kalman Filter
- 9.12 Hierarchical Invertible Neural Transport
- 9.13 Applications
- 9.13.1 Prediction of Drug Effect
- 9.13.2 Autonomous Driving
- 9.14 Concluding Remarks
- Chapter 10 Expectation Maximization
- 10.1 Introduction
- 10.2 Expectation Maximization Algorithm
- 10.3 Particle Expectation Maximization
- 10.4 Expectation Maximization for Gaussian Mixture Models
- 10.5 Neural Expectation Maximization
- 10.6 Relational Neural Expectation Maximization
- 10.7 Variational Filtering Expectation Maximization
- 10.8 Amortized Variational Filtering Expectation Maximization
- 10.9 Applications
- 10.9.1 Stochastic Volatility
- 10.9.2 Physical Reasoning
- 10.9.3 Speech, Music, and Video Modeling
- 10.10 Concluding Remarks
- Chapter 11 Reinforcement Learning‐Based Filter
- 11.1 Introduction
- 11.2 Reinforcement Learning
- 11.3 Variational Inference as Reinforcement Learning
- 11.4 Application
- 11.4.1 Battery State‐of‐Charge Estimation
- 11.5 Concluding Remarks
- Chapter 12 Nonparametric Bayesian Models
- 12.1 Introduction
- 12.2 Parametric vs Nonparametric Models
- 12.3 Measure‐Theoretic Probability
- 12.4 Exchangeability
- 12.5 Kolmogorov Extension Theorem
- 12.6 Extension of Bayesian Models
- 12.7 Conjugacy
- 12.8 Construction of Nonparametric Bayesian Models
- 12.9 Posterior Computability
- 12.10 Algorithmic Sufficiency
- 12.11 Applications
- 12.11.1 Multiple Object Tracking
- 12.11.2 Data‐Driven Probabilistic Optimal Power Flow
- 12.11.3 Analyzing Single‐Molecule Tracks
- 12.12 Concluding Remarks
- References
- Index
- EULA.