The tactile internet

The Tactile Internet will change the landscape of communication by introducing a new paradigm that enables the remote delivery of haptic data. This book answers the many questions surrounding the Tactile Internet, including its reference architecture and adapted compression methods for conveying hap...

Descripción completa

Detalles Bibliográficos
Otros Autores: Ali-Yahiya, Tara, author (author), Monnet, Wrya, author
Formato: Libro electrónico
Idioma:Inglés
Publicado: London : ISTE Ltd [2021]
Colección:Sciences, Networks and communications, Internet
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009645711006719
Tabla de Contenidos:
  • Cover
  • Half-Title Page
  • Title Page
  • Copyright Page
  • Contents
  • Foreword
  • Preface
  • List of Acronyms
  • 1. Introduction to Tactile Internet
  • 1.1. Human perception and Tactile Internet
  • 1.2. The roadmap towards Tactile Internet
  • 1.3. What is Tactile Internet?
  • 1.4. Cyber-Physical Systems and TI
  • 1.4.1. Physical world
  • 1.4.2. Internet of Things
  • 1.4.3. Communication
  • 1.4.4. Storage and computation
  • 1.4.5. Feedback
  • 1.4.6. Smart computing
  • 1.5. References
  • 2. Reference Architecture of the Tactile Internet
  • 2.1. Tactile Internet system architecture
  • 2.2. IEEE 1918.1 use cases
  • 2.2.1. Teleoperation
  • 2.2.2. Automotive
  • 2.2.3. Immersive virtual reality (IVR)
  • 2.2.4. Internet of drones
  • 2.2.5. Interpersonal communication
  • 2.2.6. Live haptic-enabled broadcast
  • 2.2.7. Cooperative automated driving
  • 2.3. Conclusion
  • 2.4. References
  • 3. Tactile Internet Key Enablers
  • 3.1. Introduction
  • 3.1.1. The fifth-generation system architecture
  • 3.1.2. Network slicing
  • 3.1.3. Network function virtualization
  • 3.1.4. Software-defined networking
  • 3.1.5. Edge computing
  • 3.1.6. Artificial intelligence
  • 3.2. Conclusion
  • 3.3. References
  • 4. 6G for Tactile Internet
  • 4.1. Introduction
  • 4.2. The architecture of 6G
  • 4.2.1. Network performance of 6G
  • 4.2.2. Space network
  • 4.2.3. Air network
  • 4.2.4. Ground network
  • 4.2.5. Underwater network
  • 4.3. 6G channel measurements and characteristics
  • 4.3.1. Optical wireless channel
  • 4.3.2. Unmanned aerial vehicle (UAV) channel
  • 4.3.3. Underwater acoustic channel
  • 4.3.4. Satellite channel
  • 4.3.5. RF and terahertz networks in 6G
  • 4.3.6. Visible light communication technology
  • 4.3.7. Orbital angular momentum technology
  • 4.4. 6G cellular Internet of Things
  • 4.5. Energy self-sustainability (ESS) in 6G.
  • 4.6. IoT-integrated ultrasmart city life
  • 4.7. AI-enabled 6G networks
  • 4.8. AIand ML-based security management in super IoT
  • 4.9. Security for 6G
  • 4.10. The WEAF Mnecosystem (water, earth, air, fire micro/ nanoecosystem) with 6G and Tactile Internet
  • 4.11. References
  • 5. IoT, IoE and Tactile Internet
  • 5.1. From M2M to IoT
  • 5.2. Classification of remote monitoring and control systems
  • 5.3. IoT-enabling technologies
  • 5.3.1. IoT hardware
  • 5.3.2. IoT software
  • 5.3.3. IoT connectivity
  • 5.4. Architectural design and interfaces
  • 5.5. IoT communication protocols
  • 5.5.1. Message Queuing Telemetry Transport (MQTT)
  • 5.5.2. Constrained Application Protocol (CoAP)
  • 5.5.3. Data Distribution Service for real-time systems (DDS)
  • 5.5.4. Open Mobile Alliance Device Management (OMA-DM)
  • 5.6. Internet of Everything (IoE)
  • 5.6.1. Enabling technologies for the IoE
  • 5.7. Protocol comparisons and the readiness for TI
  • 5.8. TI-IoT models and challenges
  • 5.9. Edge computing in the IoT
  • 5.9.1. Edge computing paradigms
  • 5.10. Real-time IoT and analytics versus real time in TI
  • 5.11. From IoT towards TI
  • 5.12. Conclusion
  • 5.13. References
  • 6. Telerobotics
  • 6.1. Introduction
  • 6.2. Teleoperation evolution to telepresence
  • 6.3. Telepresence applications
  • 6.4. Teleoperation system components
  • 6.4.1. Master domains
  • 6.4.2. Network domain (communication channel)
  • 6.4.3. Slave domain
  • 6.5. Architecture of bilateral teleoperation control system
  • 6.5.1. Classification of the control systems architectures
  • 6.5.2. Discrete architecture with transmission delay
  • 6.6. Performance and transparency of telepresence systems
  • 6.6.1. Passivity and stability
  • 6.6.2. Time delay issues
  • 6.7. Other methods for time-delay mitigation
  • 6.8. Teleoperation over the Internet.
  • 6.9. Multiple access to a teleoperation system
  • 6.10. A use case
  • 6.11. Conclusion
  • 6.12. References
  • 7. Haptic Data: Compression and Transmission Protocols
  • 7.1. Introduction
  • 7.2. Haptic perception
  • 7.2.1. Human haptic perception
  • 7.2.2. Telerobotic tactile and haptic perception
  • 7.2.3. Tactile sensing for material recognition
  • 7.2.4. Tactile sensing for object shape recognition
  • 7.2.5. Tactile sensing for pose estimation
  • 7.3. Haptic interfaces
  • 7.3.1. Haptic interface for telepresence
  • 7.3.2. Haptic and tactile sensors and actuators
  • 7.4. Haptic compression
  • 7.5. Haptic transport protocols
  • 7.5.1. Application layer protocols
  • 7.5.2. Transport layer protocols
  • 7.6. Multi-transport protocols
  • 7.7. Haptic transport protocol performance metrics
  • 7.8. Conclusion
  • 7.9. References
  • 8. Mapping Wireless Networked Robotics into Tactile Internet
  • 8.1. Wireless networked robots
  • 8.2. WNR traffic requisites
  • 8.2.1. Types of traffic in WNRs
  • 8.3. Traffic shaping and TI haptic codecs
  • 8.3.1. Introduction
  • 8.3.2. Mapping WNR control traffic to TI
  • 8.4. WNRs in the Tactile Internet architecture
  • 8.4.1. WNRs in the TI architecture and interfaces
  • 8.5. Conclusion
  • 8.6. References
  • 9. HoIP over 5G for Tactile Internet Teleoperation Application
  • 9.1. Related works
  • 9.2. 5G architecture design for Tactile Internet
  • 9.2.1. Tactile edge A
  • 9.2.2. Network domain
  • 9.2.3. Protocol stack of 5G integration with IEEE 1918.1
  • 9.3. Haptics over IP
  • 9.4. Teleoperation case study
  • 9.4.1. Master to slave (uplink) data rate in edge A
  • 9.4.2. Slave to master (downlink) data rate in edge B
  • 9.4.3. Encapsulating the haptic data in HoIP
  • 9.4.4. 5G network data and control handling
  • 9.4.5. Case study operational states
  • 9.4.6. Case study protocol stack
  • 9.5. Simulation results.
  • 9.5.1. Simulation topology
  • 9.5.2. NS3 network architecture
  • 9.5.3. Simulation scenario
  • 9.5.4. Simulation results
  • 9.6. Conclusion
  • 9.7. References
  • 10. Issues and Challenges Facing Low Latency in the Tactile Internet
  • 10.1. Introduction
  • 10.1.1. Technical requirements for the TI
  • 10.2. Low latency in the Tactile Internet
  • 10.2.1. Resource allocation
  • 10.2.2. Mobile edge computing
  • 10.2.3. Network coding
  • 10.2.4. Haptic communication protocols
  • 10.3. Intelligence and the Tactile Internet
  • 10.4. Edge intelligent
  • 10.5. Open issues
  • 10.6. Conclusion
  • 10.7. References
  • List of Authors
  • Index
  • EULA.