Human communication technology internet-of-robotic-things and ubiquitous computing
HUMAN COMMUNICATION TECHNOLOGY A unique book explaining how perception, location, communication, cognition, computation, networking, propulsion, integration of federated Internet of Robotic Things (IoRT) and digital platforms are important components of new-generation IoRT applications through conti...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
John Wiley & Sons, Incorporated
[2022]
|
Edición: | 1st edition |
Colección: | Artificial Intelligence and Soft Computing for Industrial Transformation
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009645693906719 |
Tabla de Contenidos:
- Cover
- Half-Title Page
- Series Page
- Title Page
- Copyright Page
- Contents
- Preface
- 1 Internet of Robotic Things: A New Architecture and Platform
- 1.1 Introduction
- 1.1.1 Architecture
- 1.1.1.1 Achievability of the Proposed Architecture
- 1.1.1.2 Qualities of IoRT Architecture
- 1.1.1.3 Reasonable Existing Robots for IoRT Architecture
- 1.2 Platforms
- 1.2.1 Cloud Robotics Platforms
- 1.2.2 IoRT Platform
- 1.2.3 Design a Platform
- 1.2.4 The Main Components of the Proposed Approach
- 1.2.5 IoRT Platform Design
- 1.2.6 Interconnection Design
- 1.2.7 Research Methodology
- 1.2.8 Advancement Process-Systems Thinking
- 1.2.8.1 Development Process
- 1.2.9 Trial Setup-to Confirm the Functionalities
- 1.3 Conclusion
- 1.4 Future Work
- References
- 2 Brain-Computer Interface Using Electroencephalographic Signals for the Internet of Robotic Things
- 2.1 Introduction
- 2.2 Electroencephalography Signal Acquisition Methods
- 2.2.1 Invasive Method
- 2.2.2 Non-Invasive Method
- 2.3 Electroencephalography Signal-Based BCI
- 2.3.1 Prefrontal Cortex in Controlling Concentration Strength
- 2.3.2 Neurosky Mind-Wave Mobile
- 2.3.2.1 Electroencephalography Signal Processing Devices
- 2.3.3 Electromyography Signal Extraction of Features and Its Signal Classifications
- 2.4 IoRT-Based Hardware for BCI
- 2.5 Software Setup for IoRT
- 2.6 Results and Discussions
- 2.7 Conclusion
- References
- 3 Automated Verification and Validation of IoRT Systems
- 3.1 Introduction
- 3.1.1 Automating V&
- V-An Important Key to Success
- 3.2 Program Analysis of IoRT Applications
- 3.2.1 Need for Program Analysis
- 3.2.2 Aspects to Consider in Program Analysis of IoRT Systems
- 3.3 Formal Verification of IoRT Systems
- 3.3.1 Automated Model Checking
- 3.3.2 The Model Checking Process
- 3.3.2.1 PRISM
- 3.3.2.2 UPPAAL.
- 3.3.2.3 SPIN Model Checker
- 3.3.3 Automated Theorem Prover
- 3.3.3.1 ALT-ERGO
- 3.3.4 Static Analysis
- 3.3.4.1 CODESONAR
- 3.4 Validation of IoRT Systems
- 3.4.1 IoRT Testing Methods
- 3.4.2 Design of IoRT Test
- 3.5 Automated Validation
- 3.5.1 Use of Service Visualization
- 3.5.2 Steps for Automated Validation of IoRT Systems
- 3.5.3 Choice of Appropriate Tool for Automated Validation
- 3.5.4 IoRT Systems Open Source Automated Validation Tools
- 3.5.5 Some Significant Open Source Test Automation Frameworks
- 3.5.6 Finally IoRT Security Testing
- 3.5.7 Prevalent Approaches for Security Validation
- 3.5.8 IoRT Security Tools
- References
- 4 Light Fidelity (Li-Fi) Technology: The Future Man-Machine-Machine Interaction Medium
- 4.1 Introduction
- 4.1.1 Need for Li-Fi
- 4.2 Literature Survey
- 4.2.1 An Overview on Man-to-Machine Interaction System
- 4.2.2 Review on Machine to Machine (M2M) Interaction
- 4.2.2.1 System Model
- 4.3 Light Fidelity Technology
- 4.3.1 Modulation Techniques Supporting Li-Fi
- 4.3.1.1 Single Carrier Modulation (SCM)
- 4.3.1.2 Multi Carrier Modulation
- 4.3.1.3 Li-Fi Specific Modulation
- 4.3.2 Components of Li-Fi
- 4.3.2.1 Light Emitting Diode (LED)
- 4.3.2.2 Photodiode
- 4.3.2.3 Transmitter Block
- 4.3.2.4 Receiver Block
- 4.4 Li-Fi Applications in Real Word Scenario
- 4.4.1 Indoor Navigation System for Blind People
- 4.4.2 Vehicle to Vehicle Communication
- 4.4.3 Li-Fi in Hospital
- 4.4.4 Li-Fi Applications for Pharmacies and the Pharmaceutical Industry
- 4.4.5 Li-Fi in Workplace
- 4.5 Conclusion
- References
- 5 Healthcare Management-Predictive Analysis (IoRT)
- 5.1 Introduction
- 5.1.1 Naive Bayes Classifier Prediction for SPAM
- 5.1.2 Internet of Robotic Things (IoRT)
- 5.2 Related Work
- 5.3 Fuzzy Time Interval Sequential Pattern (FTISPAM).
- 5.3.1 FTI SPAM Using GA Algorithm
- 5.3.1.1 Chromosome Generation
- 5.3.1.2 Fitness Function
- 5.3.1.3 Crossover
- 5.3.1.4 Mutation
- 5.3.1.5 Termination
- 5.3.2 Patterns Matching Using SCI
- 5.3.3 Pattern Classification Based on SCI Value
- 5.3.4 Significant Pattern Evaluation
- 5.4 Detection of Congestive Heart Failure Using Automatic Classifier
- 5.4.1 Analyzing the Dataset
- 5.4.2 Data Collection
- 5.4.2.1 Long-Term HRV Measures
- 5.4.2.2 Attribute Selection
- 5.4.3 Automatic Classifier-Belief Network
- 5.5 Experimental Analysis
- 5.6 Conclusion
- References
- 6 Multimodal Context-Sensitive Human Communication Interaction System Using Artificial Intelligence-Based Human-Centered Computing
- 6.1 Introduction
- 6.2 Literature Survey
- 6.3 Proposed Model
- 6.3.1 Multimodal Data
- 6.3.2 Dimensionality Reduction
- 6.3.3 Principal Component Analysis
- 6.3.4 Reduce the Number of Dimensions
- 6.3.5 CNN
- 6.3.6 CNN Layers
- 6.3.6.1 Convolution Layers
- 6.3.6.2 Padding Layer
- 6.3.6.3 Pooling/Subsampling Layers
- 6.3.6.4 Nonlinear Layers
- 6.3.7 ReLU
- 6.3.7.1 Fully Connected Layers
- 6.3.7.2 Activation Layer
- 6.3.8 LSTM
- 6.3.9 Weighted Combination of Networks
- 6.4 Experimental Results
- 6.4.1 Accuracy
- 6.4.2 Sensibility
- 6.4.3 Specificity
- 6.4.4 A Predictive Positive Value (PPV)
- 6.4.5 Negative Predictive Value (NPV)
- 6.5 Conclusion
- 6.6 Future Scope
- References
- 7 AI, Planning and Control Algorithms for IoRT Systems
- 7.1 Introduction
- 7.2 General Architecture of IoRT
- 7.2.1 Hardware Layer
- 7.2.2 Network Layer
- 7.2.3 Internet Layer
- 7.2.4 Infrastructure Layer
- 7.2.5 Application Layer
- 7.3 Artificial Intelligence in IoRT Systems
- 7.3.1 Technologies of Robotic Things
- 7.3.2 Artificial Intelligence in IoRT
- 7.4 Control Algorithms and Procedures for IoRT Systems.
- 7.4.1 Adaptation of IoRT Technologies
- 7.4.2 Multi-Robotic Technologies
- 7.5 Application of IoRT in Different Fields
- References
- 8 Enhancements in Communication Protocols That Powered IoRT
- 8.1 Introduction
- 8.2 IoRT Communication Architecture
- 8.2.1 Robots and Things
- 8.2.2 Wireless Link Layer
- 8.2.3 Networking Layer
- 8.2.4 Communication Layer
- 8.2.5 Application Layer
- 8.3 Bridging Robotics and IoT
- 8.4 Robot as a Node in IoT
- 8.4.1 Enhancements in Low Power WPANs
- 8.4.1.1 Enhancements in IEEE 802.15.4
- 8.4.1.2 Enhancements in Bluetooth
- 8.4.1.3 Network Layer Protocols
- 8.4.2 Enhancements in Low Power WLANs
- 8.4.2.1 Enhancements in IEEE 802.11
- 8.4.3 Enhancements in Low Power WWANs
- 8.4.3.1 LoRaWAN
- 8.4.3.2 5G
- 8.5 Robots as Edge Device in IoT
- 8.5.1 Constrained RESTful Environments (CoRE)
- 8.5.2 The Constrained Application Protocol (CoAP)
- 8.5.2.1 Latest in CoAP
- 8.5.3 The MQTT-SN Protocol
- 8.5.4 The Data Distribution Service (DDS)
- 8.5.5 Data Formats
- 8.6 Challenges and Research Solutions
- 8.7 Open Platforms for IoRT Applications
- 8.8 Industrial Drive for Interoperability
- 8.8.1 The Zigbee Alliance
- 8.8.2 The Thread Group
- 8.8.3 The WiFi Alliance
- 8.8.4 The LoRa Alliance
- 8.9 Conclusion
- References
- 9 Real Time Hazardous Gas Classification and Management System Using Artificial Neural Networks
- 9.1 Introduction
- 9.2 Existing Methodology
- 9.3 Proposed Methodology
- 9.4 Hardware &
- Software Requirements
- 9.4.1 Hardware Requirements
- 9.4.1.1 Gas Sensors Employed in Hazardous Detection
- 9.4.1.2 NI Wireless Sensor Node 3202
- 9.4.1.3 NI WSN Gateway (NI 9795)
- 9.4.1.4 COMPACT RIO (NI-9082)
- 9.5 Experimental Setup
- 9.5.1 Data Set Preparation
- 9.5.2 Artificial Neural Network Model Creation
- 9.6 Results and Discussion.
- 9.7 Conclusion and Future Work
- References
- 10 Hierarchical Elitism GSO Algorithm For Pattern Recognition
- 10.1 Introduction
- 10.2 Related Works
- 10.3 Methodology
- 10.3.1 Additive Kuan Speckle Noise Filtering Model
- 10.3.2 Hierarchical Elitism Gene GSO of MNN in Pattern Recognition
- 10.4 Experimental Setup
- 10.5 Discussion
- 10.5.1 Scenario 1: Computational Time
- 10.5.2 Scenario 2: Computational Complexity
- 10.5.3 Scenario 3: Pattern Recognition Accuracy
- 10.6 Conclusion
- References
- 11 Multidimensional Survey of Machine Learning Application in IoT (Internet of Things)
- 11.1 Machine Learning-An Introduction
- 11.1.1 Classification of Machine Learning
- 11.2 Internet of Things
- 11.3 ML in IoT
- 11.3.1 Overview
- 11.4 Literature Review
- 11.5 Different Machine Learning Algorithm
- 11.5.1 Bayesian Measurements
- 11.5.2 K-Nearest Neighbors (k-NN)
- 11.5.3 Neural Network
- 11.5.4 Decision Tree (DT)
- 11.5.5 Principal Component Analysis (PCA) t
- 11.5.6 K-Mean Calculations
- 11.5.7 Strength Teaching
- 11.6 Internet of Things in Different Frameworks
- 11.6.1 Computing Framework
- 11.6.1.1 Fog Calculation
- 11.6.1.2 Estimation Edge
- 11.6.1.3 Distributed Computing
- 11.6.1.4 Circulated Figuring
- 11.7 Smart Cities
- 11.7.1 Use Case
- 11.7.1.1 Insightful Vitality
- 11.7.1.2 Brilliant Portability
- 11.7.1.3 Urban Arranging
- 11.7.2 Attributes of the Smart City
- 11.8 Smart Transportation
- 11.8.1 Machine Learning and IoT in Smart Transportation
- 11.8.2 Markov Model
- 11.8.3 Decision Structures
- 11.9 Application of Research
- 11.9.1 In Energy
- 11.9.2 In Routing
- 11.9.3 In Living
- 11.9.4 Application in Industry
- 11.10 Machine Learning for IoT Security
- 11.10.1 Used Machine Learning Algorithms
- 11.10.2 Intrusion Detection
- 11.10.3 Authentication
- 11.11 Conclusion
- References.
- 12 IoT-Based Bias Analysis in Acoustic Feedback Using Time-Variant Adaptive Algorithm in Hearing Aids.