AWS Certified Machine Learning Study Guide specialty (mls-c01) exam

Succeed on the AWS Machine Learning exam or in your next job as a machine learning specialist on the AWS Cloud platform with this hands-on guide As the most popular cloud service in the world today, Amazon Web Services offers a wide range of opportunities for those interested in the development and...

Descripción completa

Detalles Bibliográficos
Otros Autores: Subramanian, Shreyas, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, New Jersey : John Wiley & Sons, Incorporated [2022]
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009645683806719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright Page
  • Acknowledgments
  • About the Authors
  • About the Technical Editor
  • Contents at a Glance
  • Contents
  • Introduction
  • The AWS Certified Machine Learning Specialty Exam
  • Who Should Buy This Book
  • Study Guide Features
  • AWS Certified Machine Learning Specialty Exam Objectives
  • Assessment Test
  • Answers to Assessment Test
  • Part I Introduction
  • Chapter 1 AWS AI ML Stack
  • Amazon Rekognition
  • Image and Video Operations
  • Amazon Textract
  • Sync and Async APIs
  • Amazon Transcribe
  • Transcribe Features
  • Transcribe Medical
  • Amazon Translate
  • Amazon Translate Features
  • Amazon Polly
  • Amazon Lex
  • Lex Concepts
  • Amazon Kendra
  • How Kendra Works
  • Amazon Personalize
  • Amazon Forecast
  • Forecasting Metrics
  • Amazon Comprehend
  • Amazon CodeGuru
  • Amazon Augmented AI
  • Amazon SageMaker
  • Analyzing and Preprocessing Data
  • Training
  • Model Inference
  • AWS Machine Learning Devices
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 2 Supporting Services from the AWS Stack
  • Storage
  • Amazon S3
  • Amazon EFS
  • Amazon FSx for Lustre
  • Data Versioning
  • Amazon VPC
  • AWS Lambda
  • AWS Step Functions
  • AWS RoboMaker
  • Summary
  • Exam Essentials
  • Review Questions
  • Part II Phases of Machine Learning Workloads
  • Chapter 3 Business Understanding
  • Phases of ML Workloads
  • Business Problem Identification
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 4 Framing a Machine Learning Problem
  • ML Problem Framing
  • Recommended Practices
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 5 Data Collection
  • Basic Data Concepts
  • Data Repositories
  • Data Migration to AWS
  • Batch Data Collection
  • Streaming Data Collection
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 6 Data Preparation
  • Data Preparation Tools.
  • SageMaker Ground Truth
  • Amazon EMR
  • Amazon SageMaker Processing
  • AWS Glue
  • Amazon Athena
  • Redshift Spectrum
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 7 Feature Engineering
  • Feature Engineering Concepts
  • Feature Engineering for Tabular Data
  • Feature Engineering for Unstructured and Time Series Data
  • Feature Engineering Tools on AWS
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 8 Model Training
  • Common ML Algorithms
  • Supervised Machine Learning
  • Textual Data
  • Image Analysis
  • Unsupervised Machine Learning
  • Reinforcement Learning
  • Local Training and Testing
  • Remote Training
  • Distributed Training
  • Monitoring Training Jobs
  • Amazon CloudWatch
  • AWS CloudTrail
  • Amazon EventBridge
  • Debugging Training Jobs
  • Hyperparameter Optimization
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 9 Model Evaluation
  • Experiment Management
  • Metrics and Visualization
  • Metrics in AWS AI/ML Services
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 10 Model Deployment and Inference
  • Deployment for AI Services
  • Deployment for Amazon SageMaker
  • SageMaker Hosting: Under the Hood
  • Advanced Deployment Topics
  • Autoscaling Endpoints
  • Deployment Strategies
  • Testing Strategies
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 11 Application Integration
  • Integration with On-Premises Systems
  • Integration with Cloud Systems
  • Integration with Front-End Systems
  • Summary
  • Exam Essentials
  • Review Questions
  • Part III Machine Learning Well-Architected Lens
  • Chapter 12 Operational Excellence Pillar for ML
  • Operational Excellence on AWS
  • Everything as Code
  • Continuous Integration and Continuous Delivery
  • Continuous Monitoring
  • Continuous Improvement
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 13 Security Pillar.
  • Security and AWS
  • Data Protection
  • Isolation of Compute
  • Fine-Grained Access Controls
  • Audit and Logging
  • Compliance Scope
  • Secure SageMaker Environments
  • Authentication and Authorization
  • Data Protection
  • Network Isolation
  • Logging and Monitoring
  • Compliance Scope
  • AI Services Security
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 14 Reliability Pillar
  • Reliability on AWS
  • Change Management for ML
  • Failure Management for ML
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 15 Performance Efficiency Pillar for ML
  • Performance Efficiency for ML on AWS
  • Selection
  • Review
  • Monitoring
  • Trade-offs
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 16 Cost Optimization Pillar for ML
  • Common Design Principles
  • Cost Optimization for ML Workloads
  • Design Principles
  • Common Cost Optimization Strategies
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 17 Recent Updates in the AWS AI/ML Stack
  • New Services and Features Related to AI Services
  • New Services
  • New Features of Existing Services
  • New Features Related to Amazon SageMaker
  • Amazon SageMaker Studio
  • Amazon SageMaker Data Wrangler
  • Amazon SageMaker Feature Store
  • Amazon SageMaker Clarify
  • Amazon SageMaker Autopilot
  • Amazon SageMaker JumpStart
  • Amazon SageMaker Debugger
  • Amazon SageMaker Distributed Training Libraries
  • Amazon SageMaker Pipelines and Projects
  • Amazon SageMaker Model Monitor
  • Amazon SageMaker Edge Manager
  • Amazon SageMaker Asynchronous Inference
  • Summary
  • Exam Essentials
  • Appendix Answers to the Review Questions
  • Chapter 1: AWS AI ML Stack
  • Chapter 2: Supporting Services from the AWS Stack
  • Chapter 3: Business Understanding
  • Chapter 4: Framing a Machine Learning Problem
  • Chapter 5: Data Collection
  • Chapter 6: Data Preparation.
  • Chapter 7: Feature Engineering
  • Chapter 8: Model Training
  • Chapter 9: Model Evaluation
  • Chapter 10: Model Deployment and Inference
  • Chapter 11: Application Integration
  • Chapter 12: Operational Excellence Pillar for ML
  • Chapter 13: Security Pillar
  • Chapter 14: Reliability Pillar
  • Chapter 15: Performance Efficiency Pillar for ML
  • Chapter 16: Cost Optimization Pillar for ML
  • Index
  • EULA.