Beginning deep learning with TensorFlow work with Keras, MNIST data sets, and advanced neural networks

Incorporate deep learning into your development projects through hands-on coding and the latest versions of deep learning software, such as TensorFlow 2 and Keras. The materials used in this book are based on years of successful online education experience and feedback from thousands of online learn...

Descripción completa

Detalles Bibliográficos
Otros Autores: Long, Liangqu, author (author), Zeng, Xiangming, author
Formato: Libro electrónico
Idioma:Inglés
Publicado: New York, New York : Apress L. P. [2022]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009645681706719
Tabla de Contenidos:
  • Intro
  • Table of Contents
  • About the Authors
  • About the Technical Reviewer
  • Acknowledgments
  • Chapter 1: Introduction to Artificial Intelligence
  • 1.1 Artificial Intelligence in Action
  • 1.1.1 Artificial Intelligence Explained
  • 1.1.2 Machine Learning
  • 1.1.3 Neural Networks and Deep Learning
  • 1.2 The History of Neural Networks
  • 1.2.1 Shallow Neural Networks
  • 1.2.2 Deep Learning
  • 1.3 Deep Learning Characteristics
  • 1.3.1 Data Volume
  • 1.3.2 Computing Power
  • 1.3.3 Network Scale
  • 1.3.4 General Intelligence
  • 1.4 Deep Learning Applications
  • 1.4.1 Computer Vision
  • 1.4.2 Natural Language Processing
  • 1.4.3 Reinforcement Learning
  • 1.5 Deep Learning Framework
  • 1.5.1 Major Frameworks
  • 1.5.2 TensorFlow 2 and 1.x
  • 1.5.3 Demo
  • 1.6 Development Environment Installation
  • 1.6.1 Anaconda Installation
  • 1.6.2 CUDA Installation
  • 1.6.3 TensorFlow Installation
  • 1.6.4 Common Editor Installation
  • 1.7 Summary
  • 1.8 Reference
  • Chapter 2: Regression
  • 2.1 Neuron Model
  • 2.2 Optimization Method
  • 2.3 Linear Model in Action
  • 2.4 Summary
  • 2.5 References
  • Chapter 3: Classification
  • 3.1 Handwritten Digital Picture Dataset
  • 3.2 Build a Model
  • 3.3 Error Calculation
  • 3.4 Do We Really Solve the Problem?
  • 3.5 Nonlinear Model
  • 3.6 Model Complexity
  • 3.7 Optimization Method
  • 3.8 Hands-On Handwritten Digital Image Recognition
  • 3.8.1 Build the Network
  • 3.8.2 Model Training
  • 3.9 Summary
  • 3.10 Reference
  • Chapter 4: Basic TensorFlow
  • 4.1 Data Types
  • 4.1.1 Numeric
  • 4.1.2 String
  • 4.1.3 Boolean
  • 4.2 Numerical Precision
  • 4.3 Tensors to Be Optimized
  • 4.4 Create Tensors
  • 4.4.1 Create Tensors from Arrays and Lists
  • 4.4.2 Create All-0 or All-1 Tensors
  • 4.4.3 Create a Customized Numeric Tensor
  • 4.4.4 Create a Tensor from a Known Distribution
  • 4.4.5 Create a Sequence.
  • 4.5 Typical Applications of Tensors
  • 4.5.1 Scalar
  • 4.5.2 Vector
  • 4.5.3 Matrix
  • 4.5.4 Three-Dimensional Tensor
  • 4.5.5 Four-Dimensional Tensor
  • 4.6 Indexing and Slicing
  • 4.6.1 Indexing
  • 4.6.2 Slicing
  • 4.6.3 Slicing Summary
  • 4.7 Dimensional Transformation
  • 4.7.1 Reshape
  • 4.7.2 Add and Delete Dimensions
  • 4.7.3 Swap Dimensions
  • 4.7.4 Copy Data
  • 4.8 Broadcasting
  • 4.9 Mathematical Operations
  • 4.9.1 Addition, Subtraction, Multiplication and Division
  • 4.9.2 Power Operations
  • 4.9.3 Exponential and Logarithmic Operations
  • 4.9.4 Matrix Multiplication
  • 4.10 Hands-On Forward Propagation
  • Chapter 5: Advanced TensorFlow
  • 5.1 Merge and Split
  • 5.1.1 Merge
  • 5.1.2 Split
  • 5.2 Common Statistics
  • 5.2.1 Norm
  • 5.2.2 Max, Min, Mean, and Sum
  • 5.3 Tensor Comparison
  • 5.4 Fill and Copy
  • 5.4.1 Fill
  • 5.4.2 Copy
  • 5.5 Data Limiting
  • 5.6 Advanced Operations
  • 5.6.1 tf.gather
  • 5.6.2 tf.gather_nd
  • 5.6.3 tf.boolean_mask
  • 5.6.4 tf.where
  • 5.6.5 tf.scatter_nd
  • 5.6.6 tf.meshgrid
  • 5.7 Load Classic Datasets
  • 5.7.1 Shuffling
  • 5.7.2 Batch Training
  • 5.7.3 Preprocessing
  • 5.7.4 Epoch Training
  • 5.8 Hands-On MNIST Dataset
  • Chapter 6: Neural Networks
  • 6.1 Perceptron
  • 6.2 Fully Connected Layer
  • 6.2.1 Tensor Mode Implementation
  • 6.2.2 Layer Implementation
  • 6.3 Neural Network
  • 6.3.1 Tensor Mode Implementation
  • 6.3.2 Layer Mode Implementation
  • 6.3.3 Optimization
  • 6.4 Activation function
  • 6.4.1 Sigmoid
  • 6.4.2 ReLU
  • 6.4.3 LeakyReLU
  • 6.4.4 Tanh
  • 6.5 Design of Output Layer
  • 6.5.1 Common Real Number Space
  • 6.5.2 [0, 1] Interval
  • 6.5.3 [0,1] Interval with Sum 1
  • 6.5.4 (-1, 1) Interval
  • 6.6 Error Calculation
  • 6.6.1 Mean Square Error Function
  • 6.6.2 Cross-Entropy Error Function
  • 6.7 Types of Neural Networks
  • 6.7.1 Convolutional Neural Network
  • 6.7.2 Recurrent Neural Network.
  • 6.7.3 Attention Mechanism Network
  • 6.7.4 Graph Convolutional Neural Network
  • 6.8 Hands-On of Automobile Fuel Consumption Prediction
  • 6.8.1 Dataset
  • 6.8.2 Create a Network
  • 6.8.3 Training and Testing
  • 6.9 References
  • Chapter 7: Backward Propagation Algorithm
  • 7.1 Derivatives and Gradients
  • 7.2 Common Properties of Derivatives
  • 7.2.1 Common Derivatives
  • 7.2.2 Common Property of Derivatives
  • 7.2.3 Hands-On Derivative Finding
  • 7.3 Derivative of Activation Function
  • 7.3.1 Derivative of Sigmoid Function
  • 7.3.2 Derivative of ReLU Function
  • 7.3.3 Derivative of LeakyReLU Function
  • 7.3.4 Derivative of Tanh Function
  • 7.4 Gradient of Loss Function
  • 7.4.1 Gradient of Mean Square Error Function
  • 7.4.2 Gradient of Cross-Entropy Function
  • 7.5 Gradient of Fully Connected Layer
  • 7.5.1 Gradient of a Single Neuron
  • 7.5.2 Gradient of Fully Connected Layer
  • 7.6 Chain Rule
  • 7.7 Back Propagation Algorithm
  • 7.8 Hands-On Optimization of Himmelblau
  • 7.9 Hands-On Back Propagation Algorithm
  • 7.9.1 Dataset
  • 7.9.2 Network Layer
  • 7.9.3 Network model
  • 7.9.4 Network Training
  • 7.9.5 Network Performance
  • 7.10 References
  • Chapter 8: Keras Advanced API
  • 8.1 Common Functional Modules
  • 8.1.1 Common Network Layer Classes
  • 8.1.2 Network Container
  • 8.2 Model Configuration, Training, and Testing
  • 8.2.1 Model Configuration
  • 8.2.2 Model Training
  • 8.2.3 Model Testing
  • 8.3 Model Saving and Loading
  • 8.3.1 Tensor Method
  • 8.3.2 Network Method
  • 8.3.3 SavedModel method
  • 8.4 Custom Network
  • 8.4.1 Custom Network Layer
  • 8.4.2 Customized Network
  • 8.5 Model Zoo
  • 8.5.1 Load Model
  • 8.6 Metrics
  • 8.6.1 Create a Metrics Container
  • 8.6.2 Write Data
  • 8.6.3 Read Statistical Data
  • 8.6.4 Clear the Container
  • 8.6.5 Hands-On Accuracy Metric
  • 8.7 Visualization
  • 8.7.1 Model Side
  • 8.7.2 Browser Side.
  • 8.8 Summary
  • Chapter 9: Overfitting
  • 9.1 Model Capacity
  • 9.2 Overfitting and Underfitting
  • 9.2.1 Underfitting
  • 9.2.2 Overfitting
  • 9.3 Dataset Division
  • 9.3.1 Validation Set and Hyperparameters
  • 9.3.2 Early Stopping
  • 9.4 Model Design
  • 9.5 Regularization
  • 9.5.1 L0 Regularization
  • 9.5.2 L1 Regularization
  • 9.5.3 L2 Regularization
  • 9.5.4 Regularization Effect
  • 9.6 Dropout
  • 9.7 Data Augmentation
  • 9.7.1 Rotation
  • 9.7.2 Flip
  • 9.7.3 Cropping
  • 9.7.4 Generate Data
  • 9.7.5 Other Methods
  • 9.8 Hands-On Overfitting
  • 9.8.1 Build the Dataset
  • 9.8.2 Influence of the Number of Network Layers
  • 9.8.3 Impact of Dropout
  • 9.8.4 Impact of Regularization
  • 9.9 References
  • Chapter 10: Convolutional Neural Networks
  • 10.1 Problems with Fully Connected N
  • 10.1.1 Local Correlation
  • 10.1.2 Weight Sharing
  • 10.1.3 Convolution Operation
  • 10.2 Convolutional Neural Network
  • 10.2.1 Single-Channel Input and Single Convolution Kernel
  • 10.2.2 Multi-channel Input and Single Convolution Kernel
  • 10.2.3 Multi-channel Input and Multi-convolution Kernel
  • 10.2.4 Stride Size
  • 10.2.5 Padding
  • 10.3 Convolutional Layer Implementation
  • 10.3.1 Custom Weights
  • 10.3.2 Convolutional Layer Classes
  • 10.4 Hands-On LeNet-5
  • 10.5 Representation Learning
  • 10.6 Gradient Propagation
  • 10.7 Pooling Layer
  • 10.8 BatchNorm Layer
  • 10.8.1 Forward Propagation
  • 10.8.2 Backward Propagation
  • 10.8.3 Implementation of BatchNormalization layer
  • 10.9 Classical Convolutional Network
  • 10.9.1 AlexNet
  • 10.9.2 VGG Series
  • 10.9.3 GoogLeNet
  • 10.10 Hands-On CIFAR10 and VGG13
  • 10.11 Convolutional Layer Variants
  • 10.11.1 Dilated/Atrous Convolution
  • 10.11.2 Transposed Convolution
  • o + 2p − k = n * s
  • o + 2p − k ≠n * s
  • Matrix Transposition
  • Transposed Convolution Implementation
  • 10.11.3 Separate Convolution.
  • 10.12 Deep Residual Network
  • 10.12.1 ResNet Principle
  • 10.12.2 ResBlock Implementation
  • 10.13 DenseNet
  • 10.14 Hands-On CIFAR10 and ResNet18
  • 10.15 References
  • Chapter 11: Recurrent Neural Network
  • 11.1 Sequence Representation Method
  • 11.1.1 Embedding Layer
  • 11.1.2 Pre-trained Word Vectors
  • 11.2 Recurrent Neural Network
  • 11.2.1 Is a Fully Connected Layer Feasible?
  • 11.2.2 Shared Weight
  • 11.2.3 Global Semantics
  • 11.2.4 Recurrent Neural Network
  • 11.3 Gradient Propagation
  • 11.4 How to Use RNN Layers
  • 11.4.1 SimpleRNNCell
  • 11.4.2 Multilayer SimpleRNNCell Network
  • 11.4.3 SimpleRNN Layer
  • 11.5 Hands-On RNN Sentiment Classification
  • 11.5.1 Dataset
  • 11.5.2 Network Model
  • 11.5.3 Training and Testing
  • 11.6 Gradient Vanishing and Gradient Exploding
  • 11.6.1 Gradient Clipping
  • 11.6.2 Gradient Vanishing
  • 11.7 RNN Short-Term Memory
  • 11.8 LSTM Principle
  • 11.8.1 Forget Gate
  • 11.8.2 Input Gate
  • 11.8.3 Update Memory
  • 11.8.4 Output Gate
  • 11.8.5 Summary
  • 11.9 How to Use the LSTM Layer
  • 11.9.1 LSTMCell
  • 11.9.2 LSTM layer
  • 11.10 GRU Introduction
  • 11.10.1 Reset Door
  • 11.10.2 Update Gate
  • 11.10.3 How to Use GRU
  • 11.11 Hands-On LSTM/GRU Sentiment Classification
  • 11.11.1 LSTM Model
  • 11.11.2 GRU model
  • 11.12 Pre-trained Word Vectors
  • 11.13 Pre-trained Word Vectors
  • 11.14 References
  • Chapter 12: Autoencoder
  • 12.1 Principle of Autoencoder
  • 12.2 Hands-On Fashion MNIST Image Reconstruction
  • 12.2.1 Fashion MNIST Dataset
  • 12.2.2 Encoder
  • 12.2.3 Decoder
  • 12.2.4 Autoencoder
  • 12.2.5 Network Training
  • 12.2.6 Image Reconstruction
  • 12.3 Autoencoder Variants
  • 12.3.1 Dropout Autoencoder
  • 12.3.2 Adversarial Autoencoder
  • 12.4 Variational Autoencoder
  • 12.4.1 Principle of VAE
  • 12.4.2 Reparameterization Trick
  • 12.5 Hands-On VAE Image Reconstruction
  • 12.5.1 VAE model.
  • 12.5.2 Reparameterization Trick.