Machine learning with Pyspark with natural language processing and recommender systems
Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems. Machine Learning with PySpark, Second Edition begins with the fu...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
New York, NY :
Apress
[2022]
|
Edición: | Second edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009644291506719 |
Tabla de Contenidos:
- Chapter 1: Introduction to Spark 3.1
- Chapter 2: Manage Data with PySpark
- Chapter 3: Introduction to Machine Learning
- Chapter 4: Linear Regression with PySpark
- Chapter 5: Logistic Regression with PySpark
- Chapter 6: Ensembling with PySpark
- Chapter 7: Clustering with PySpark
- Chapter 8: Recommendation Engine with PySpark
- Chapter 9: Advanced Feature Engineering with PySpark.