Applied modeling techniques and data analysis 2 financial, demographic, stochastic and statistical models and methods
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
Wiley
[2021]
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009644256306719 |
Tabla de Contenidos:
- Cover
- Half-Title Page
- Title Page
- Copyright Page
- Contents
- Preface
- Part 1. Financial and Demographic Modeling Techniques
- Chapter 1. Data Mining Application Issues in the Taxpayer Selection Process
- 1.1. Introduction
- 1.2. Materials and methods
- 1.2.1. Data
- 1.2.2. Interesting taxpayers
- 1.2.3. Enforced tax recovery proceedings
- 1.2.4. The models
- 1.3. Results
- 1.4. Discussion
- 1.5. Conclusion
- 1.6. References
- Chapter 2: Asymptotics of Implied Volatility in the Gatheral Double Stochastic Volatility Model
- 2.1. Introduction
- 2.2. The results
- 2.3. Proofs
- 2.4. References
- Chapter 3: New Dividend Strategies
- 3.1. Introduction
- 3.2. Model 1
- 3.3. Model 2
- 3.4. Conclusion and further results
- 3.5. Acknowledgments
- 3.6. References
- Chapter 4: Introduction of Reserves in Self-adjusting Steering of Parameters of a Pay-As-You-Go Pension Plan
- 4.1. Introduction
- 4.2. The pension system
- 4.3. Theoretical framework of the Musgrave rule
- 4.4. Transformation of the retirement fund
- 4.5. Conclusion
- 4.6. References
- Chapter 5: Forecasting Stochastic Volatility for Exchange Rates using EWMA
- 5.1. Introduction
- 5.2. Data
- 5.3. Empirical model
- 5.4. Exchange rate volatility forecasting
- 5.5. Conclusion
- 5.6. Acknowledgments
- 5.7. References
- Chapter 6: An Arbitrage-free Large Market Model for Forward Spread Curves
- 6.1. Introduction and background
- 6.1.1. Term-structure (interest rate) models
- 6.1.2. Forward-rate models versus spot-rate models
- 6.1.3. The Heath-Jarrow-Morton framework
- 6.1.4. Construction of our model
- 6.2. Construction of a market with infinitely many assets
- 6.2.1. The Cuchiero-Klein-Teichmann approach
- 6.2.2. Adapting Cuchiero-Klein-Teichmann's results to our objective
- 6.3. Existence, uniqueness and non-negativity.
- 6.3.1. Existence and uniqueness: mild
- 6.3.2. Non-negativity of solutions
- 6.4. Conclusion and future works
- 6.5. References
- Chapter 7: Estimating the Healthy Life Expectancy (HLE) in the Far Past: The Case of Sweden (1751-2016) with Forecasts to 2060
- 7.1. Life expectancy and healthy life expectancy estimates
- 7.2. The logistic model
- 7.3. The HALE estimates and our direct calculations
- 7.4. Conclusion
- 7.5. References
- Chapter 8: Vaccination Coverage Against Seasonal Influenza of Workers in the Primary Health Care Units in the Prefecture of Chania
- 8.1. Introduction
- 8.2. Material and method
- 8.3. Results
- 8.4. Discussion
- 8.5. References
- Chapter 9: Some Remarks on the Coronavirus Pandemic in Europe
- 9.1. Introduction
- 9.2. Background
- 9.2.1. CoV pathogens
- 9.2.2. Clinical characteristics of COVID-19
- 9.2.3. Diagnosis
- 9.2.4. Epidemiology and transmission of COVID-19
- 9.2.5. Country response measures
- 9.2.6. The role of statistical research in the case of COVID-19 and its challenges
- 9.3. Materials and analyses
- 9.4. The first phase of the pandemic
- 9.5. Concluding remarks
- 9.6. References
- Part 2. Applied Stochastic and Statistical Models and Methods
- Chapter 10. The Double Flexible Dirichlet: A Structured Mixture Model for Compositional Data
- 10.1. Introduction
- 10.1.1. The flexible Dirichlet distribution
- 10.2. The double flexible Dirichlet distribution
- 10.2.1. Mixture components and cluster means
- 10.3. Computational and estimation issues
- 10.3.1. Parameter estimation: the EM algorithm
- 10.3.2. Simulation study
- 10.4. References
- Chapter 11. Quantization of Transformed Lévy Measures
- 11.1. Introduction
- 11.2. Estimation strategy
- 11.3. Estimation of masses and the atoms
- 11.4. Simulation results
- 11.5. Conclusion
- 11.6. References.
- Chapter 12. A Flexible Mixture Regression Model for Bounded Multivariate Responses
- 12.1. Introduction
- 12.2. Flexible Dirichlet regression model
- 12.3. Inferential issues
- 12.4. Simulation studies
- 12.4.1. Simulation study 1: presence of outliers
- 12.4.2. Simulation study 2: generic mixture of two Dirichlet distributions
- 12.4.3. Simulation study 3: FD distribution
- 12.5. Discussion
- 12.6. References
- Chapter 13: On Asymptotic Structure of the Critical Galton-Watson Branching Processes with Infinite Variance and Allowing Immigration
- 13.1. Introduction
- 13.2. Invariant measures of GW process
- 13.3. Invariant measures of GWPI
- 13.4. Conclusion
- 13.5. References
- Chapter 14. Properties of the Extreme Points of the Joint Eigenvalue Probability Density Function of the Wishart Matrix
- 14.1. Introduction
- 14.2. Background
- 14.3. Polynomial factorization of the Vandermonde and Wishart matrices
- 14.4. Matrix norm of the Vandermonde and Wishart matrices
- 14.5. Condition number of the Vandermonde and Wishart matrices
- 14.6. Conclusion
- 14.7. Acknowledgments
- 14.8. References
- Chapter 15: Forecast Uncertainty of the Weighted TAR Predictor
- 15.1. Introduction
- 15.2. SETAR predictors and bootstrap prediction intervals
- 15.3. Monte Carlo simulation
- 15.4. References
- Chapter 16: Revisiting Transitions Between Superstatistics
- 16.1. Introduction
- 16.2. From superstatistic to transition between superstatistics
- 16.3. Transition confirmation
- 16.4. Beck's transition model
- 16.5. Conclusion
- 16.6. Acknowledgments
- 16.7. References
- Chapter 17: Research on Retrial Queue with Two-Way Communication in a Diffusion Environment
- 17.1. Introduction
- 17.2. Mathematical model
- 17.3. Asymptotic average characteristics
- 17.4. Deviation of the number of applications in the system.
- 17.5. Probability distribution density of device states
- 17.6. Conclusion
- 17.7. References
- List of Authors
- Index
- Other titles from iSTE in Innovation, Entrepreneurship and Management
- EULA.