Applied modeling techniques and data analysis 2 financial, demographic, stochastic and statistical models and methods

Detalles Bibliográficos
Otros Autores: Dimotikalis, Yiannis, editor (editor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, New Jersey : Wiley [2021]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009644256306719
Tabla de Contenidos:
  • Cover
  • Half-Title Page
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Part 1. Financial and Demographic Modeling Techniques
  • Chapter 1. Data Mining Application Issues in the Taxpayer Selection Process
  • 1.1. Introduction
  • 1.2. Materials and methods
  • 1.2.1. Data
  • 1.2.2. Interesting taxpayers
  • 1.2.3. Enforced tax recovery proceedings
  • 1.2.4. The models
  • 1.3. Results
  • 1.4. Discussion
  • 1.5. Conclusion
  • 1.6. References
  • Chapter 2: Asymptotics of Implied Volatility in the Gatheral Double Stochastic Volatility Model
  • 2.1. Introduction
  • 2.2. The results
  • 2.3. Proofs
  • 2.4. References
  • Chapter 3: New Dividend Strategies
  • 3.1. Introduction
  • 3.2. Model 1
  • 3.3. Model 2
  • 3.4. Conclusion and further results
  • 3.5. Acknowledgments
  • 3.6. References
  • Chapter 4: Introduction of Reserves in Self-adjusting Steering of Parameters of a Pay-As-You-Go Pension Plan
  • 4.1. Introduction
  • 4.2. The pension system
  • 4.3. Theoretical framework of the Musgrave rule
  • 4.4. Transformation of the retirement fund
  • 4.5. Conclusion
  • 4.6. References
  • Chapter 5: Forecasting Stochastic Volatility for Exchange Rates using EWMA
  • 5.1. Introduction
  • 5.2. Data
  • 5.3. Empirical model
  • 5.4. Exchange rate volatility forecasting
  • 5.5. Conclusion
  • 5.6. Acknowledgments
  • 5.7. References
  • Chapter 6: An Arbitrage-free Large Market Model for Forward Spread Curves
  • 6.1. Introduction and background
  • 6.1.1. Term-structure (interest rate) models
  • 6.1.2. Forward-rate models versus spot-rate models
  • 6.1.3. The Heath-Jarrow-Morton framework
  • 6.1.4. Construction of our model
  • 6.2. Construction of a market with infinitely many assets
  • 6.2.1. The Cuchiero-Klein-Teichmann approach
  • 6.2.2. Adapting Cuchiero-Klein-Teichmann's results to our objective
  • 6.3. Existence, uniqueness and non-negativity.
  • 6.3.1. Existence and uniqueness: mild
  • 6.3.2. Non-negativity of solutions
  • 6.4. Conclusion and future works
  • 6.5. References
  • Chapter 7: Estimating the Healthy Life Expectancy (HLE) in the Far Past: The Case of Sweden (1751-2016) with Forecasts to 2060
  • 7.1. Life expectancy and healthy life expectancy estimates
  • 7.2. The logistic model
  • 7.3. The HALE estimates and our direct calculations
  • 7.4. Conclusion
  • 7.5. References
  • Chapter 8: Vaccination Coverage Against Seasonal Influenza of Workers in the Primary Health Care Units in the Prefecture of Chania
  • 8.1. Introduction
  • 8.2. Material and method
  • 8.3. Results
  • 8.4. Discussion
  • 8.5. References
  • Chapter 9: Some Remarks on the Coronavirus Pandemic in Europe
  • 9.1. Introduction
  • 9.2. Background
  • 9.2.1. CoV pathogens
  • 9.2.2. Clinical characteristics of COVID-19
  • 9.2.3. Diagnosis
  • 9.2.4. Epidemiology and transmission of COVID-19
  • 9.2.5. Country response measures
  • 9.2.6. The role of statistical research in the case of COVID-19 and its challenges
  • 9.3. Materials and analyses
  • 9.4. The first phase of the pandemic
  • 9.5. Concluding remarks
  • 9.6. References
  • Part 2. Applied Stochastic and Statistical Models and Methods
  • Chapter 10. The Double Flexible Dirichlet: A Structured Mixture Model for Compositional Data
  • 10.1. Introduction
  • 10.1.1. The flexible Dirichlet distribution
  • 10.2. The double flexible Dirichlet distribution
  • 10.2.1. Mixture components and cluster means
  • 10.3. Computational and estimation issues
  • 10.3.1. Parameter estimation: the EM algorithm
  • 10.3.2. Simulation study
  • 10.4. References
  • Chapter 11. Quantization of Transformed Lévy Measures
  • 11.1. Introduction
  • 11.2. Estimation strategy
  • 11.3. Estimation of masses and the atoms
  • 11.4. Simulation results
  • 11.5. Conclusion
  • 11.6. References.
  • Chapter 12. A Flexible Mixture Regression Model for Bounded Multivariate Responses
  • 12.1. Introduction
  • 12.2. Flexible Dirichlet regression model
  • 12.3. Inferential issues
  • 12.4. Simulation studies
  • 12.4.1. Simulation study 1: presence of outliers
  • 12.4.2. Simulation study 2: generic mixture of two Dirichlet distributions
  • 12.4.3. Simulation study 3: FD distribution
  • 12.5. Discussion
  • 12.6. References
  • Chapter 13: On Asymptotic Structure of the Critical Galton-Watson Branching Processes with Infinite Variance and Allowing Immigration
  • 13.1. Introduction
  • 13.2. Invariant measures of GW process
  • 13.3. Invariant measures of GWPI
  • 13.4. Conclusion
  • 13.5. References
  • Chapter 14. Properties of the Extreme Points of the Joint Eigenvalue Probability Density Function of the Wishart Matrix
  • 14.1. Introduction
  • 14.2. Background
  • 14.3. Polynomial factorization of the Vandermonde and Wishart matrices
  • 14.4. Matrix norm of the Vandermonde and Wishart matrices
  • 14.5. Condition number of the Vandermonde and Wishart matrices
  • 14.6. Conclusion
  • 14.7. Acknowledgments
  • 14.8. References
  • Chapter 15: Forecast Uncertainty of the Weighted TAR Predictor
  • 15.1. Introduction
  • 15.2. SETAR predictors and bootstrap prediction intervals
  • 15.3. Monte Carlo simulation
  • 15.4. References
  • Chapter 16: Revisiting Transitions Between Superstatistics
  • 16.1. Introduction
  • 16.2. From superstatistic to transition between superstatistics
  • 16.3. Transition confirmation
  • 16.4. Beck's transition model
  • 16.5. Conclusion
  • 16.6. Acknowledgments
  • 16.7. References
  • Chapter 17: Research on Retrial Queue with Two-Way Communication in a Diffusion Environment
  • 17.1. Introduction
  • 17.2. Mathematical model
  • 17.3. Asymptotic average characteristics
  • 17.4. Deviation of the number of applications in the system.
  • 17.5. Probability distribution density of device states
  • 17.6. Conclusion
  • 17.7. References
  • List of Authors
  • Index
  • Other titles from iSTE in Innovation, Entrepreneurship and Management
  • EULA.