Applied modeling techniques and data analysis 1, Computational data analysis methods and tools 1, Computational data analysis methods and tools /
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
London, England ; Hoboken, New Jersey :
ISTE
[2021]
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009644256206719 |
Tabla de Contenidos:
- Cover
- Half-Title Page
- Title Page
- Copyright Page
- Contents
- Preface
- PART 1: Computational Data Analysis
- 1 A Variant of Updating PageRank in Evolving Tree Graphs
- 1.1. Introduction
- 1.2. Notations and definitions
- 1.3. Updating the transition matrix
- 1.4. Updating the PageRank of a tree graph
- 1.4.1. Updating the PageRank of tree graph when a batch of edges changes
- 1.4.2. An example of updating the PageRank of a tree
- 1.5. Maintaining the levels of vertices in a changing tree graph
- 1.6. Conclusion
- 1.7. Acknowledgments
- 1.8. References
- 2 Nonlinearly Perturbed Markov Chains and Information Networks
- 2.1. Introduction
- 2.2. Stationary distributions for Markov chains with damping component
- 2.2.1. Stationary distributions for Markov chains with damping component
- 2.2.2. The stationary distribution of the Markov chain X0,n
- 2.3. A perturbation analysis for stationary distributions of Markov chains with damping component
- 2.3.1. Continuity property for stationary probabilities
- 2.3.2. Rate of convergence for stationary distributions
- 2.3.3. Asymptotic expansions for stationary distributions
- 2.3.4. Results of numerical experiments
- 2.4. Coupling and ergodic theorems for perturbed Markov chains with damping component
- 2.4.1. Coupling for regularly perturbed Markov chains with damping component
- 2.4.2. Coupling for singularly perturbed Markov chains with damping component
- 2.4.3. Ergodic theorems for perturbed Markov chains with damping component in the triangular array mode
- 2.4.4. Numerical examples
- 2.5. Acknowledgments
- 2.6. References
- 3 PageRank and Perturbed Markov Chains
- 3.1. Introduction
- 3.2. PageRank of the first-order perturbed Markov chain
- 3.3. PageRank of the second-order perturbed Markov chain.
- 3.4. Rates of convergence of PageRanks of first- and second-order perturbed Markov chains
- 3.5. Conclusion
- 3.6. Acknowledgments
- 3.7. References
- 4 Doubly Robust Data-driven Distributionally Robust Optimization
- 4.1. Introduction
- 4.2. DD-DRO, optimal transport and supervised machine learning
- 4.2.1. Optimal transport distances and discrepancies
- 4.3. Data-driven selection of optimal transport cost function
- 4.3.1. Data-driven cost functions via metric learning procedures
- 4.4. Robust optimization for metric learning
- 4.4.1. Robust optimization for relative metric learning
- 4.4.2. Robust optimization for absolute metric learning
- 4.5. Numerical experiments
- 4.6. Discussion and conclusion
- 4.7. References
- 5 A Comparison of Graph Centrality Measures Based on Lazy Random Walks
- 5.1. Introduction
- 5.1.1. Notations and abbreviations
- 5.1.2. Linear systems and the Neumann series
- 5.2. Review on some centrality measures
- 5.2.1. Degree centrality
- 5.2.2. Katz status and β-centralities
- 5.2.3. Eigenvector and cumulative nomination centralities
- 5.2.4. Alpha centrality
- 5.2.5. PageRank centrality
- 5.2.6. Summary of the centrality measures as steady state, shifted and power series
- 5.3. Generalizations of centrality measures
- 5.3.1. Priors to centrality measures
- 5.3.2. Lazy variants of centrality measures
- 5.3.3. Lazy α-centrality
- 5.3.4. Lazy Katz centrality
- 5.3.5. Lazy cumulative nomination centrality
- 5.4. Experimental results
- 5.5. Discussion
- 5.6. Conclusion
- 5.7. Acknowledgments
- 5.8. References
- 6 Error Detection in Sequential Laser Sensor Input
- 6.1. Introduction
- 6.2. Data description
- 6.3. Algorithms
- 6.3.1. Algorithm for consecutive changes in mean
- 6.3.2. Algorithm for burst detection
- 6.4. Results
- 6.5. Acknowledgments
- 6.6. References.
- 7 Diagnostics and Visualization of Point Process Models for Event Times on a Social Network
- 7.1. Introduction
- 7.2. Background
- 7.2.1. Univariate point processes
- 7.2.2. Network point processes
- 7.3. Model checking for time heterogeneity
- 7.3.1. Time rescaling theorem
- 7.3.2. Residual process
- 7.4. Model checking for network heterogeneity and structure
- 7.4.1. Kolmogorov-Smirnov test
- 7.4.2. Structure score based on the Pearson residual matrix
- 7.5. Summary
- 7.6. Acknowledgments
- 7.7. References
- PART 2: Data Analysis Methods and Tools
- 8 Exploring the Distribution of Conditional Quantile Estimates: An Application to Specific Costs of Pig Production in the European Union
- 8.1. Introduction
- 8.2. Conceptual framework and methodological aspects
- 8.2.1. The empirical model for estimating the specific production costs
- 8.2.2. The procedures for estimating and testing conditional quantiles
- 8.2.3. Symbolic PCA of the specific cost distributions
- 8.2.4. Symbolic clustering analysis of the specific cost distributions
- 8.3. Results
- 8.3.1. The SO-PCA of specific cost estimates
- 8.3.2. The divisive hierarchy of specific cost estimates
- 8.4. Conclusion
- 8.5. References
- 9 Maximization Problem Subject to Constraint of Availability in Semi-Markov Model of Operation
- 9.1. Introduction
- 9.2. Semi-Markov decision process
- 9.3. Semi-Markov decision model of operation
- 9.3.1. Description and assumptions
- 9.3.2. Model construction
- 9.4. Optimization problem
- 9.4.1. Linear programing method
- 9.5. Numerical example
- 9.6. Conclusion
- 9.7. References
- 10 The Impact of Multicollinearity on Big Data Multivariate Analysis Modeling
- 10.1. Introduction
- 10.2. Multicollinearity
- 10.3. Dimension reduction techniques
- 10.3.1. Beale et al.
- 10.3.2. Principal component analysis.
- 10.4. Application
- 10.4.1. The modeling of PPE
- 10.4.2. Concluding remarks
- 10.5. Acknowledgments
- 10.6. References
- 11 Weak Signals in High-Dimensional Poisson Regression Models
- 11.1. Introduction
- 11.2. Statistical background
- 11.3. Methodologies
- 11.3.1. Predictor screening methods
- 11.3.2. Post-screening parameter estimation methods
- 11.4. Numerical studies
- 11.4.1. Simulation settings and performance criteria
- 11.4.2. Results
- 11.5. Conclusion
- 11.6. Acknowledgments
- 11.7. References
- 12 Groundwater Level Forecasting for Water Resource Management
- 12.1. Introduction
- 12.2. Materials and methods
- 12.2.1. Study area
- 12.2.2. Forecast method
- 12.3. Results
- 12.4. Conclusion
- 12.5. References
- 13 Phase I Non-parametric Control Charts for Individual Observations: A Selective Review and Some Results
- 13.1. Introduction
- 13.1.1. Background
- 13.1.2. Univariate non-parametric process monitoring
- 13.2. Problem formulation
- 13.3. A comparative study
- 13.3.1. The existing methodologies
- 13.3.2. Simulation settings
- 13.3.3. Simulation-study results
- 13.4. Concluding remarks
- 13.5. References
- 14 On Divergence and Dissimilarity Measures for Multiple Time Series
- 14.1. Introduction
- 14.2. Classical measures
- 14.3. Divergence measures
- 14.4. Dissimilarity measures for ordered data
- 14.4.1. Standard dissimilarity measures
- 14.4.2. Advanced dissimilarity measures
- 14.5. Conclusion
- 14.6. References
- List of Authors
- Index
- Other titles from iSTE in Innovation, Entrepreneurship and Management
- EULA.