Applied modeling techniques and data analysis 1, Computational data analysis methods and tools 1, Computational data analysis methods and tools /

Detalles Bibliográficos
Otros Autores: Karagrigoriou, Alex, editor (editor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: London, England ; Hoboken, New Jersey : ISTE [2021]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009644256206719
Tabla de Contenidos:
  • Cover
  • Half-Title Page
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • PART 1: Computational Data Analysis
  • 1 A Variant of Updating PageRank in Evolving Tree Graphs
  • 1.1. Introduction
  • 1.2. Notations and definitions
  • 1.3. Updating the transition matrix
  • 1.4. Updating the PageRank of a tree graph
  • 1.4.1. Updating the PageRank of tree graph when a batch of edges changes
  • 1.4.2. An example of updating the PageRank of a tree
  • 1.5. Maintaining the levels of vertices in a changing tree graph
  • 1.6. Conclusion
  • 1.7. Acknowledgments
  • 1.8. References
  • 2 Nonlinearly Perturbed Markov Chains and Information Networks
  • 2.1. Introduction
  • 2.2. Stationary distributions for Markov chains with damping component
  • 2.2.1. Stationary distributions for Markov chains with damping component
  • 2.2.2. The stationary distribution of the Markov chain X0,n
  • 2.3. A perturbation analysis for stationary distributions of Markov chains with damping component
  • 2.3.1. Continuity property for stationary probabilities
  • 2.3.2. Rate of convergence for stationary distributions
  • 2.3.3. Asymptotic expansions for stationary distributions
  • 2.3.4. Results of numerical experiments
  • 2.4. Coupling and ergodic theorems for perturbed Markov chains with damping component
  • 2.4.1. Coupling for regularly perturbed Markov chains with damping component
  • 2.4.2. Coupling for singularly perturbed Markov chains with damping component
  • 2.4.3. Ergodic theorems for perturbed Markov chains with damping component in the triangular array mode
  • 2.4.4. Numerical examples
  • 2.5. Acknowledgments
  • 2.6. References
  • 3 PageRank and Perturbed Markov Chains
  • 3.1. Introduction
  • 3.2. PageRank of the first-order perturbed Markov chain
  • 3.3. PageRank of the second-order perturbed Markov chain.
  • 3.4. Rates of convergence of PageRanks of first- and second-order perturbed Markov chains
  • 3.5. Conclusion
  • 3.6. Acknowledgments
  • 3.7. References
  • 4 Doubly Robust Data-driven Distributionally Robust Optimization
  • 4.1. Introduction
  • 4.2. DD-DRO, optimal transport and supervised machine learning
  • 4.2.1. Optimal transport distances and discrepancies
  • 4.3. Data-driven selection of optimal transport cost function
  • 4.3.1. Data-driven cost functions via metric learning procedures
  • 4.4. Robust optimization for metric learning
  • 4.4.1. Robust optimization for relative metric learning
  • 4.4.2. Robust optimization for absolute metric learning
  • 4.5. Numerical experiments
  • 4.6. Discussion and conclusion
  • 4.7. References
  • 5 A Comparison of Graph Centrality Measures Based on Lazy Random Walks
  • 5.1. Introduction
  • 5.1.1. Notations and abbreviations
  • 5.1.2. Linear systems and the Neumann series
  • 5.2. Review on some centrality measures
  • 5.2.1. Degree centrality
  • 5.2.2. Katz status and β-centralities
  • 5.2.3. Eigenvector and cumulative nomination centralities
  • 5.2.4. Alpha centrality
  • 5.2.5. PageRank centrality
  • 5.2.6. Summary of the centrality measures as steady state, shifted and power series
  • 5.3. Generalizations of centrality measures
  • 5.3.1. Priors to centrality measures
  • 5.3.2. Lazy variants of centrality measures
  • 5.3.3. Lazy α-centrality
  • 5.3.4. Lazy Katz centrality
  • 5.3.5. Lazy cumulative nomination centrality
  • 5.4. Experimental results
  • 5.5. Discussion
  • 5.6. Conclusion
  • 5.7. Acknowledgments
  • 5.8. References
  • 6 Error Detection in Sequential Laser Sensor Input
  • 6.1. Introduction
  • 6.2. Data description
  • 6.3. Algorithms
  • 6.3.1. Algorithm for consecutive changes in mean
  • 6.3.2. Algorithm for burst detection
  • 6.4. Results
  • 6.5. Acknowledgments
  • 6.6. References.
  • 7 Diagnostics and Visualization of Point Process Models for Event Times on a Social Network
  • 7.1. Introduction
  • 7.2. Background
  • 7.2.1. Univariate point processes
  • 7.2.2. Network point processes
  • 7.3. Model checking for time heterogeneity
  • 7.3.1. Time rescaling theorem
  • 7.3.2. Residual process
  • 7.4. Model checking for network heterogeneity and structure
  • 7.4.1. Kolmogorov-Smirnov test
  • 7.4.2. Structure score based on the Pearson residual matrix
  • 7.5. Summary
  • 7.6. Acknowledgments
  • 7.7. References
  • PART 2: Data Analysis Methods and Tools
  • 8 Exploring the Distribution of Conditional Quantile Estimates: An Application to Specific Costs of Pig Production in the European Union
  • 8.1. Introduction
  • 8.2. Conceptual framework and methodological aspects
  • 8.2.1. The empirical model for estimating the specific production costs
  • 8.2.2. The procedures for estimating and testing conditional quantiles
  • 8.2.3. Symbolic PCA of the specific cost distributions
  • 8.2.4. Symbolic clustering analysis of the specific cost distributions
  • 8.3. Results
  • 8.3.1. The SO-PCA of specific cost estimates
  • 8.3.2. The divisive hierarchy of specific cost estimates
  • 8.4. Conclusion
  • 8.5. References
  • 9 Maximization Problem Subject to Constraint of Availability in Semi-Markov Model of Operation
  • 9.1. Introduction
  • 9.2. Semi-Markov decision process
  • 9.3. Semi-Markov decision model of operation
  • 9.3.1. Description and assumptions
  • 9.3.2. Model construction
  • 9.4. Optimization problem
  • 9.4.1. Linear programing method
  • 9.5. Numerical example
  • 9.6. Conclusion
  • 9.7. References
  • 10 The Impact of Multicollinearity on Big Data Multivariate Analysis Modeling
  • 10.1. Introduction
  • 10.2. Multicollinearity
  • 10.3. Dimension reduction techniques
  • 10.3.1. Beale et al.
  • 10.3.2. Principal component analysis.
  • 10.4. Application
  • 10.4.1. The modeling of PPE
  • 10.4.2. Concluding remarks
  • 10.5. Acknowledgments
  • 10.6. References
  • 11 Weak Signals in High-Dimensional Poisson Regression Models
  • 11.1. Introduction
  • 11.2. Statistical background
  • 11.3. Methodologies
  • 11.3.1. Predictor screening methods
  • 11.3.2. Post-screening parameter estimation methods
  • 11.4. Numerical studies
  • 11.4.1. Simulation settings and performance criteria
  • 11.4.2. Results
  • 11.5. Conclusion
  • 11.6. Acknowledgments
  • 11.7. References
  • 12 Groundwater Level Forecasting for Water Resource Management
  • 12.1. Introduction
  • 12.2. Materials and methods
  • 12.2.1. Study area
  • 12.2.2. Forecast method
  • 12.3. Results
  • 12.4. Conclusion
  • 12.5. References
  • 13 Phase I Non-parametric Control Charts for Individual Observations: A Selective Review and Some Results
  • 13.1. Introduction
  • 13.1.1. Background
  • 13.1.2. Univariate non-parametric process monitoring
  • 13.2. Problem formulation
  • 13.3. A comparative study
  • 13.3.1. The existing methodologies
  • 13.3.2. Simulation settings
  • 13.3.3. Simulation-study results
  • 13.4. Concluding remarks
  • 13.5. References
  • 14 On Divergence and Dissimilarity Measures for Multiple Time Series
  • 14.1. Introduction
  • 14.2. Classical measures
  • 14.3. Divergence measures
  • 14.4. Dissimilarity measures for ordered data
  • 14.4.1. Standard dissimilarity measures
  • 14.4.2. Advanced dissimilarity measures
  • 14.5. Conclusion
  • 14.6. References
  • List of Authors
  • Index
  • Other titles from iSTE in Innovation, Entrepreneurship and Management
  • EULA.