Econometric analysis
For first-year graduate courses in Econometrics for Social Scientists. Bridging the gap between social science studies and econometric analysis Designed to bridge the gap between social science studies and field-econometrics, Econometric Analysis, 8th Edition, Global Edition, presents this ever-grow...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Harlow, England :
Pearson
[2020]
|
Edición: | Eighth, Global edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009632535506719 |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright Page
- Brief Contents
- Contents
- Examples and Applications
- Preface
- Part I: The Linear Regression Model
- CHAPTER 1 Econometrics
- 1.1 Introduction
- 1.2 The Paradigm of Econometrics
- 1.3 The Practice of Econometrics
- 1.4 Microeconometrics and Macroeconometrics
- 1.5 Econometric Modeling
- 1.6 Plan of the Book
- 1.7 Preliminaries
- 1.7.1 Numerical Examples
- 1.7.2 Software and Replication
- 1.7.3 Notational Conventions
- CHAPTER 2 The Linear Regression Model
- 2.1 Introduction
- 2.2 The Linear Regression Model
- 2.3 Assumptions of the Linear Regression Model
- 2.3.1 Linearity of the Regression Model
- 2.3.2 Full Rank
- 2.3.3 Regression
- 2.3.4 Homoscedastic and Nonautocorrelated Disturbances
- 2.3.5 Data Generating Process for the Regressors
- 2.3.6 Normality
- 2.3.7 Independence and Exogeneity
- 2.4 Summary and Conclusions
- CHAPTER 3 Least Squares Regression
- 3.1 Introduction
- 3.2 Least Squares Regression
- 3.2.1 The Least Squares Coefficient Vector
- 3.2.2 Application: An Investment Equation
- 3.2.3 Algebraic Aspects of the Least Squares Solution
- 3.2.4 Projection
- 3.3 Partitioned Regression and Partial Regression
- 3.4 Partial Regression and Partial Correlation Coefficients
- 3.5 Goodness of Fit and the Analysis of Variance
- 3.5.1 The Adjusted R-Squared and a Measure of Fit
- 3.5.2 R-Squared and the Constant Term in the Model
- 3.5.3 Comparing Models
- 3.6 Linearly Transformed Regression
- 3.7 Summary and Conclusions
- CHAPTER 4 Estimating the Regression Model by Least Squares
- 4.1 Introduction
- 4.2 Motivating Least Squares
- 4.2.1 Population Orthogonality Conditions
- 4.2.2 Minimum Mean Squared Error Predictor
- 4.2.3 Minimum Variance Linear Unbiased Estimation
- 4.3 Statistical Properties of the Least Squares Estimator.
- 4.3.1 Unbiased Estimation
- 4.3.2 Omitted Variable Bias
- 4.3.3 Inclusion of Irrelevant Variables
- 4.3.4 Variance of the Least Squares Estimator
- 4.3.5 The Gauss-Markov Theorem
- 4.3.6 The Normality Assumption
- 4.4 Asymptotic Properties of the Least Squares Estimator
- 4.4.1 Consistency of the Least Squares Estimator of ß
- 4.4.2 The Estimator of Asy. Var[b]
- 4.4.3 Asymptotic Normality of the Least Squares Estimator
- 4.4.4 Asymptotic Efficiency
- 4.4.5 Linear Projections
- 4.5 Robust Estimation and Inference
- 4.5.1 Consistency of the Least Squares Estimator
- 4.5.2 A Heteroscedasticity Robust Covariance Matrix for Least Squares
- 4.5.3 Robustness to Clustering
- 4.5.4 Bootstrapped Standard Errors with Clustered Data
- 4.6 Asymptotic Distribution of a Function of b: The Delta Method
- 4.7 Interval Estimation
- 4.7.1 Forming a Confidence Interval for a Coefficient
- 4.7.2 Confidence Interval for a Linear Combination of Coefficients: the Oaxaca Decomposition
- 4.8 Prediction and Forecasting
- 4.8.1 Prediction Intervals
- 4.8.2 Predicting y when the Regression Model Describes Log y
- 4.8.3 Prediction Interval for y when the Regression Model Describes Log y
- 4.8.4 Forecasting
- 4.9 Data Problems
- 4.9.1 Multicollinearity
- 4.9.2 Principal Components
- 4.9.3 Missing Values and Data Imputation
- 4.9.4 Measurement Error
- 4.9.5 Outliers and Influential Observations
- 4.10 Summary and Conclusions
- CHAPTER 5 Hypothesis Tests and Model Selection
- 5.1 Introduction
- 5.2 Hypothesis Testing Methodology
- 5.2.1 Restrictions and Hypotheses
- 5.2.2 Nested Models
- 5.2.3 Testing Procedures
- 5.2.4 Size, Power, and Consistency of a Test
- 5.2.5 A Methodological Dilemma: Bayesian Versus Classical Testing
- 5.3 Three Approaches to Testing Hypotheses
- 5.3.1 Wald Tests Based on the Distance Measure.
- 5.3.1.a Testing a Hypothesis About a Coefficient
- 5.3.1.b The F Statistic
- 5.3.2 Tests Based on the Fit of the Regression
- 5.3.2.a The Restricted Least Squares Estimator
- 5.3.2.b The Loss of Fit from Restricted Least Squares
- 5.3.2.c Testing the Significance of the Regression
- 5.3.2.d Solving Out the Restrictions and a Caution about R2
- 5.3.3 Lagrange Multiplier Tests
- 5.4 Large-Sample Tests and Robust Inference
- 5.5 Testing Nonlinear Restrictions
- 5.6 Choosing Between Nonnested Models
- 5.6.1 Testing Nonnested Hypotheses
- 5.6.2 An Encompassing Model
- 5.6.3 Comprehensive Approach-The J Test
- 5.7 A Specification Test
- 5.8 Model Building-A General to Simple Strategy
- 5.8.1 Model Selection Criteria
- 5.8.2 Model Selection
- 5.8.3 Classical Model Selection
- 5.8.4 Bayesian Model Averaging
- 5.9 Summary and Conclusions
- CHAPTER 6 Functional Form, Difference in Differences, and Structural Change
- 6.1 Introduction
- 6.2 Using Binary Variables
- 6.2.1 Binary Variables in Regression
- 6.2.2 Several Categories
- 6.2.3 Modeling Individual Heterogeneity
- 6.2.4 Sets of Categories
- 6.2.5 Threshold Effects and Categorical Variables
- 6.2.6 Transition Tables
- 6.3 Difference in Differences Regression
- 6.3.1 Treatment Effects
- 6.3.2 Examining the Effects of Discrete Policy Changes
- 6.4 Using Regression Kinks and Discontinuities to Analyze Social Policy
- 6.4.1 Regression Kinked Design
- 6.4.2 Regression Discontinuity Design
- 6.5 Nonlinearity in the Variables
- 6.5.1 Functional Forms
- 6.5.2 Interaction Effects
- 6.5.3 Identifying Nonlinearity
- 6.5.4 Intrinsically Linear Models
- 6.6 Structural Break and Parameter Variation
- 6.6.1 Different Parameter Vectors
- 6.6.2 Robust Tests of Structural Break with Unequal Variances
- 6.6.3 Pooling Regressions
- 6.7 Summary And Conclusions.
- CHAPTER 7 Nonlinear, Semiparametric, and Nonparametric Regression Models
- 7.1 Introduction
- 7.2 Nonlinear Regression Models
- 7.2.1 Assumptions of the Nonlinear Regression Model
- 7.2.2 The Nonlinear Least Squares Estimator
- 7.2.3 Large-Sample Properties of the Nonlinear Least Squares Estimator
- 7.2.4 Robust Covariance Matrix Estimation
- 7.2.5 Hypothesis Testing and Parametric Restrictions
- 7.2.6 Applications
- 7.2.7 Loglinear Models
- 7.2.8 Computing the Nonlinear Least Squares Estimator
- 7.3 Median and Quantile Regression
- 7.3.1 Least Absolute Deviations Estimation
- 7.3.2 Quantile Regression Models
- 7.4 Partially Linear Regression
- 7.5 Nonparametric Regression
- 7.6 Summary and Conclusions
- CHAPTER 8 Endogeneity and Instrumental Variable Estimation
- 8.1 Introduction
- 8.2 Assumptions of the Extended Model
- 8.3 Instrumental Variables Estimation
- 8.3.1 Least Squares
- 8.3.2 The Instrumental Variables Estimator
- 8.3.3 Estimating the Asymptotic Covariance Matrix
- 8.3.4 Motivating the Instrumental Variables Estimator
- 8.4 Two-Stage Least Squares, Control Functions, and Limited Information Maximum Likelihood
- 8.4.1 Two-Stage Least Squares
- 8.4.2 A Control Function Approach
- 8.4.3 Limited Information Maximum Likelihood
- 8.5 Endogenous Dummy Variables: Estimating Treatment Effects
- 8.5.1 Regression Analysis of Treatment Effects
- 8.5.2 Instrumental Variables
- 8.5.3 A Control Function Estimator
- 8.5.4 Propensity Score Matching
- 8.6 Hypothesis Tests
- 8.6.1 Testing Restrictions
- 8.6.2 Specification Tests
- 8.6.3 Testing for Endogeneity: The Hausman and Wu Specification Tests
- 8.6.4 A Test for Overidentification
- 8.7 Weak Instruments and LIML
- 8.8 Measurement Error
- 8.8.1 Least Squares Attenuation
- 8.8.2 Instrumental Variables Estimation
- 8.8.3 Proxy Variables.
- 8.9 Nonlinear Instrumental Variables Estimation
- 8.10 Natural Experiments and the Search for Causal Effects
- 8.11 Summary and Conclusions
- Part II: Generalized Regression Model and Equation Systems
- CHAPTER 9 The Generalized Regression Model and Heteroscedasticity
- 9.1 Introduction
- 9.2 Robust Least Squares Estimation and Inference
- 9.3 Properties of Least Squares and Instrumental Variables
- 9.3.1 Finite-Sample Properties of Least Squares
- 9.3.2 Asymptotic Properties of Least Squares
- 9.3.3 Heteroscedasticity and Var[b|X]
- 9.3.4 Instrumental Variable Estimation
- 9.4 Efficient Estimation by Generalized Least Squares
- 9.4.1 Generalized Least Squares (GLS)
- 9.4.2 Feasible Generalized Least Squares (FGLS)
- 9.5 Heteroscedasticity and Weighted Least Squares
- 9.5.1 Weighted Least Squares
- 9.5.2 Weighted Least Squares with Known Ω
- 9.5.3 Estimation When Ω Contains Unknown Parameters
- 9.6 Testing for Heteroscedasticity
- 9.6.1 White's General Test
- 9.6.2 The Lagrange Multiplier Test
- 9.7 Two Applications
- 9.7.1 Multiplicative Heteroscedasticity
- 9.7.2 Groupwise Heteroscedasticity
- 9.8 Summary and Conclusions
- CHAPTER 10 Systems of Regression Equations
- 10.1 Introduction
- 10.2 The Seemingly Unrelated Regressions Model
- 10.2.1 Ordinary Least Squares And Robust Inference
- 10.2.2 Generalized Least Squares
- 10.2.3 Feasible Generalized Least Squares
- 10.2.4 Testing Hypotheses
- 10.2.5 The Pooled Model
- 10.3 Systems of Demand Equations: Singular Systems
- 10.3.1 Cobb-Douglas Cost Function
- 10.3.2 Flexible Functional Forms: The Translog Cost Function
- 10.4 Simultaneous Equations Models
- 10.4.1 Systems of Equations
- 10.4.2 A General Notation for Linear Simultaneous Equations Models
- 10.4.3 The Identification Problem
- 10.4.4 Single Equation Estimation and Inference.
- 10.4.5 System Methods of Estimation.