AI for healthcare with Keras and Tensorflow 2.0 design, develop, and deploy machine learning models using healthcare data

Detalles Bibliográficos
Otros Autores: Anshik, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: [Place of publication not identified] : Apress [2021]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009631855206719
Tabla de Contenidos:
  • Intro
  • Table of Contents
  • About the Author
  • About the Technical Reviewers
  • Introduction
  • Chapter 1: Healthcare Market: A Primer
  • Different Stakeholders of the Healthcare Marketplace
  • Regulators
  • Food and Drug Administration (FDA)
  • Center for Medicare and Medicaid Services (CMS)
  • Center for Medicare and Medicaid Innovation (CMMI)
  • Payers
  • Providers
  • Regulation of Healthcare Information
  • AI Applications in Healthcare
  • Screening
  • Diagnosis
  • Prognosis
  • Response to Treatment
  • What Is the Industry Landscape?
  • Conclusion
  • Chapter 2: Introduction and Setup
  • Introduction to TensorFlow 2
  • TensorFlow Core
  • TensorFlow JS
  • TensorFlow Lite
  • TensorFlow Extended
  • TensorFlow 1.x vs 2.x
  • What Is TF 1.x?
  • Embracing TF 2.x
  • Eager Execution
  • AutoGraph
  • TensorFlow Datasets
  • tf.keras
  • Estimators
  • Recommendations for Best Use
  • Installation and Setup
  • Python Installation
  • Using the Virtual Environment
  • Library and Versions
  • TensorFlow and GPU
  • Others
  • Conclusion
  • Chapter 3: Predicting Hospital Readmission by Analyzing Patient EHR Records
  • What Is EHR Data?
  • MIMIC 3 Data: Setup and Introduction
  • Access
  • Introduction and Setup
  • Data
  • Social and Demographic
  • Admissions Related
  • Patient's Clinical Data
  • Lab Events
  • Comorbidity Score
  • Modeling for Patient Representation
  • A Brief Introduction to Autoencoders
  • Feature Columns in TensorFlow
  • Creating an Input Pipeline Using tf.data
  • Creating Feature Columns
  • Building a Stacked Autoencoder
  • Cohort Discovery
  • What Is an Ideal Cohort Set?
  • Optimizing K-Means Performance
  • Deciding the Number of Clusters by Inertia and Silhouette Score Analysis
  • Checking Cluster Health
  • Multitask Learning Model
  • What Is Multitask Learning ?
  • Different Ways to Train a MTL Model
  • Training Your MTL Model
  • Conclusion.
  • Chapter 4: Predicting Medical Billing Codes from Clinical Notes
  • Introduction
  • Data
  • NOTEEVENTS
  • DIAGNOSES_ICD
  • Understanding How Language Modeling Works
  • Paying Attention
  • Transforming the NLP Space: Transformer Architecture
  • Positional Encoding
  • Multi-Head Attention
  • BERT: Bidirectional Encoder Representations from Transformers
  • Input
  • Token Embeddings
  • Segment Embeddings
  • Training
  • Masked Language Modeling
  • Next-Sentence Prediction
  • Modeling
  • BERT Deep-Dive
  • What Does the Vocabulary Actually Contain?
  • Training
  • Conclusion
  • Chapter 5: Extracting Structured Data from Receipt Images Using a Graph Convolutional Network
  • Data
  • Mapping Node Labels to OCR Output
  • Node Features
  • Hierarchical Layout
  • Line Formation
  • Graph Modeling Algorithm
  • Input Data Pipeline
  • What Are Graphs and Why Do We Need Them?
  • Graph Convolutional Networks
  • Convolutions over Graph
  • Understanding GCNs
  • Layer Stacking in GCNs
  • Training
  • Modeling
  • Train-Test Split and Target Encoding
  • Creating Flow for Training in StellarGraph
  • Training and Model Performance Plots
  • Conclusion
  • Chapter 6: Handling Availability of Low-Training Data in Healthcare
  • Introduction
  • Semi-Supervised Learning
  • GANs
  • Autoencoders
  • Transfer Learning
  • Weak Supervised Learning
  • Exploring Snorkel
  • Data Exploration
  • Introduction
  • Labeling Functions
  • Regex
  • Syntactic
  • Distance Supervision
  • Pipeline
  • Writing Your LFs
  • Working with Decorators
  • Preprocessor in Snorkel
  • Training
  • Evaluation
  • Generating the Final Labels
  • Conclusion
  • Chapter 7: Federated Learning and Healthcare
  • Introduction
  • How Does Federation Learning Work?
  • Types of Federated Learning
  • Horizontal Federated Learning
  • Vertical Federated Learning
  • Federated Transfer Learning
  • Privacy Mechanism
  • Secure Aggregation.
  • Differential Privacy
  • TensorFlow Federated
  • Input Data
  • Custom Data Load Pipeline
  • Preprocessing Input Data
  • Creating Federated Data
  • Federated Communications
  • Evaluation
  • Conclusion
  • Chapter 8: Medical Imaging
  • What Is Medical Imaging?
  • Image Modalities
  • Data Storage
  • Dealing with 2-D and 3-D Images
  • Handling 2-D Images
  • DICOM in Python
  • EDA on DICOM Metadata
  • View Position
  • Age
  • Sex
  • Pixel Spacing
  • Mean Intensity
  • Handling 3-D Images
  • NIFTI Format
  • Introduction to MRI Image Processing
  • Non-Even Pixel Distribution
  • Correlation Test
  • Cropping and Padding
  • Image Classification on 2-D Images
  • Image Preprocessing
  • Histogram Equalization
  • Isotropic Equalization of Pixels
  • Model Creation
  • Preparing Input Data
  • Training
  • Image Segmentation for 3-D Images
  • Image Preprocessing
  • Bias Field Correction
  • Removing Unwanted Slices
  • Model Creation
  • Preparing Input Data
  • Training
  • Performance Evaluation
  • Transfer Learning for Medical Images
  • Conclusion
  • References
  • Chapter 9: Machines Have All the Answers, Except What's the Purpose of Life
  • Introduction
  • Getting Data
  • Designing Your Q&amp
  • A
  • Retriever Module
  • Query Paraphrasing
  • Retrieval Mechanics
  • Term/Phrase-Based
  • Semantic-Based
  • Reranking
  • Comprehension
  • BERT for Q&amp
  • A
  • Fine-Tuning a Q&amp
  • A Dataset
  • Final Design and Code
  • Step 0: Preparing the Document Data
  • Step 1: BERT-QE Expansion
  • Step 1.1: Extract the Top k Documents for a Query Using BM-25
  • Step 1.2: Relevance Score on the Top 200 Documents
  • Step 2: Semantic Passage Retrieval
  • Step 3: Passage Reranking Using a Fine-Tuned Covid BERT Model on the Med-Marco Dataset
  • Step 4: Comprehension
  • Conclusion
  • Chapter 10: You Need an Audience Now
  • Demystifying the Web
  • How Does an Application Communicate?.
  • Cloud Technology
  • Docker and Kubernetes
  • Why Docker?
  • OS Virtualization
  • Kubernetes
  • Deploying the QnA System
  • Building a Flask Structure
  • Deep Dive into app.py
  • Understanding index.html
  • Dockerizing Your Application
  • Creating a Docker Image
  • Base Image and FROM Command
  • COPY and EXPOSE
  • WORKDIR, RUN, and CMD
  • Dockerfile
  • Building Docker Image
  • Making It Live Using Heroku
  • Conclusion
  • Index.