Beginning machine learning in the browser quick-start guide to gait analysis with JavaScript and TensorFlow.js

Detalles Bibliográficos
Otros Autores: Suryadevara, Nagender Kumar, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: [Place of publication not identified] : APress [2021]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009631697006719
Tabla de Contenidos:
  • Intro
  • Table of Contents
  • About the Author
  • About the Technical Reviewer
  • Acknowledgments
  • Preface
  • Chapter 1: Web Development
  • Machine Learning Overview
  • Web Communication
  • Organizing the Web with HTML
  • Web Development Using IDEs/Editors
  • Building Blocks of Web Development
  • HTML and CSS Programming
  • Dynamic HTML
  • Cascading Style Sheets
  • Inline Style Sheets
  • Embedded Style Sheets
  • External Style Sheets
  • JavaScript Basics
  • Including the JavaScript
  • Where to Insert JS Scripts
  • JavaScript for an Event-Driven Process
  • Document Object Model Manipulation
  • Introduction to jQuery
  • Summary
  • References
  • Chapter 2: Browser-Based Data Processing
  • JavaScript Libraries and API for ML on the Web
  • W3C WebML CG (Community Group)
  • Manipulating HTML Elements Using JS Libraries
  • p5.js
  • Drawing Graphical Objects
  • Manipulating DOM Objects
  • DOM onEvent(mousePressed) Handling
  • Multiple DOM Objects onEvent Handling
  • HTML Interactive Elements
  • Interaction with HTML and CSS Elements
  • Hierarchical (Parent-Child) Interaction of DOM Elements
  • Accessing DOM Parent-Child Elements Using Variables
  • Graphics and Interactive Processing in the Browser Using p5.js
  • Interactive Graphics Application
  • Object Instance, Storage of Multiple Values, and Loop Through Object
  • Getting Started with Machine Learning in the Browser Using ml5.js and p5.js
  • Design, Develop, and Execute Programs Locally
  • Method 1: Using Python - HTTP Server
  • Method 2: Using Visual Studio Code Editor with Node.js Live Server
  • Summary
  • References
  • Chapter 3: Human Pose Estimation in the Browser
  • Human Pose at a Glance
  • PoseNet vs. OpenPose
  • Human Pose Estimation Using Neural Networks
  • DeepPose: Human Pose Estimation via Deep Neural Networks
  • Efficient Object Localization Using Convolutional Networks.
  • Convolutional Pose Machines
  • Human Pose Estimation with Iterative Error Feedback
  • Stacked Hourglass Networks for Human Pose Estimation
  • Simple Baselines for Human Pose Estimation and Tracking
  • Deep High-Resolution Representation Learning for Human Pose Estimation
  • Using the ml5.js:posenet() Method
  • Input, Output, and Data Structure of the PoseNet Model
  • Input
  • Output
  • .on() Function
  • Summary
  • References
  • Chapter 4: Human Pose Classification
  • Need for Human Pose Estimation in the Browser
  • ML Classification Techniques in the Browser
  • ML Using TensorFlow.js
  • Changing Flat File Data into TensorFlow.js Format
  • Artificial Neural Network Model in the Browser Using TensorFlow.js
  • Trivial Neural Network
  • Example 1: Neural Network Model in TensorFlow.js
  • Example 2: A Simple ANN to Realize the "Not AND" (NAND) Boolean Operation
  • Human Pose Classification Using PoseNet
  • Setting Up a PoseNet Project
  • Step 1: Including TensorFlow.js and PoseNet Libraries in the HTML Program (Main File)
  • Step 2: Single-Person Pose Estimation Using a Browser Webcam
  • PoseNet Model Confidence Values
  • Summary
  • References
  • Chapter 5: Gait Analysis
  • Gait Measurement Techniques
  • Gait Cycle Measurement Parameters and Terminology
  • Web User Interface for Monitoring Gait Parameters
  • index.html
  • Real-Time Data Visualization of the Gait Parameters (Patterns) on the Browser
  • Determining Gait Patterns Using Threshold Values
  • Summary
  • References
  • Chapter 6: Future Possibilities for Running AI Methods in a Browser
  • Introduction
  • Additional Machine Learning Applications with TensorFlow
  • Face Recognition Using face-api.js
  • Hand Pose Estimation
  • Summary
  • References
  • Conclusion
  • Index.