Practical convolutional neural networks implement advanced deep learning models using Python

One stop guide to implementing award-winning, and cutting-edge CNN architectures About This Book Fast-paced guide with use cases and real-world examples to get well versed with CNN techniques Implement CNN models on image classification, transfer learning, Object Detection, Instance Segmentation, GA...

Descripción completa

Detalles Bibliográficos
Otros Autores: Sewak, Mohit, author (author), Karim, Md. Rezaul, author, Pujari, Pradeep, author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Birmingham, [England] ; Mumbai, [India] : Packt 2018.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009631590406719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright and Credits
  • Packt Upsell
  • Contributors
  • Table of Contents
  • Preface
  • Chapter 1: Deep Neural Networks - Overview
  • Building blocks of a neural network
  • Introduction to TensorFlow
  • Installing TensorFlow
  • For macOS X/Linux variants
  • TensorFlow basics
  • Basic math with TensorFlow
  • Softmax in TensorFlow
  • Introduction to the MNIST dataset
  • The simplest artificial neural network
  • Building a single-layer neural network with TensorFlow
  • Keras deep learning library overview
  • Layers in the Keras model
  • Handwritten number recognition with Keras and MNIST
  • Retrieving training and test data
  • Flattened data
  • Visualizing the training data
  • Building the network
  • Training the network
  • Testing
  • Understanding backpropagation
  • Summary
  • Chapter 2: Introduction to Convolutional Neural Networks
  • History of CNNs
  • Convolutional neural networks
  • How do computers interpret images?
  • Code for visualizing an image
  • Dropout
  • Input layer
  • Convolutional layer
  • Convolutional layers in Keras
  • Pooling layer
  • Practical example - image classification
  • Image augmentation
  • Summary
  • Chapter 3: Build Your First CNN and Performance Optimization
  • CNN architectures and drawbacks of DNNs
  • Convolutional operations
  • Pooling, stride, and padding operations
  • Fully connected layer
  • Convolution and pooling operations in TensorFlow
  • Applying pooling operations in TensorFlow
  • Convolution operations in TensorFlow
  • Training a CNN
  • Weight and bias initialization
  • Regularization
  • Activation functions
  • Using sigmoid
  • Using tanh
  • Using ReLU
  • Building, training, and evaluating our first CNN
  • Dataset description
  • Step 1 - Loading the required packages
  • Step 2 - Loading the training/test images to generate train/test set
  • Step 3- Defining CNN hyperparameters.
  • Step 4 - Constructing the CNN layers
  • Step 5 - Preparing the TensorFlow graph
  • Step 6 - Creating a CNN model
  • Step 7 - Running the TensorFlow graph to train the CNN model
  • Step 8 - Model evaluation
  • Model performance optimization
  • Number of hidden layers
  • Number of neurons per hidden layer
  • Batch normalization
  • Advanced regularization and avoiding overfitting
  • Applying dropout operations with TensorFlow
  • Which optimizer to use?
  • Memory tuning
  • Appropriate layer placement
  • Building the second CNN by putting everything together
  • Dataset description and preprocessing
  • Creating the CNN model
  • Training and evaluating the network
  • Summary
  • Chapter 4: Popular CNN Model Architectures
  • Introduction to ImageNet
  • LeNet
  • AlexNet architecture
  • Traffic sign classifiers using AlexNet
  • VGGNet architecture
  • VGG16 image classification code example
  • GoogLeNet architecture
  • Architecture insights
  • Inception module
  • ResNet architecture
  • Summary
  • Chapter 5: Transfer Learning
  • Feature extraction approach
  • Target dataset is small and is similar to the original training dataset
  • Target dataset is small but different from the original training dataset
  • Target dataset is large and similar to the original training dataset
  • Target dataset is large and different from the original training dataset
  • Transfer learning example
  • Multi-task learning
  • Summary
  • Chapter 6: Autoencoders for CNN
  • Introducing to autoencoders
  • Convolutional autoencoder
  • Applications
  • An example of compression
  • Summary
  • Chapter 7: Object Detection and Instance Segmentation with CNN
  • The differences between object detection and image classification
  • Why is object detection much more challenging than image classification?
  • Traditional, nonCNN approaches to object detection.
  • Haar features, cascading classifiers, and the Viola-Jones algorithm
  • Haar Features
  • Cascading classifiers
  • The Viola-Jones algorithm
  • R-CNN - Regions with CNN features
  • Fast R-CNN - fast region-based CNN
  • Faster R-CNN - faster region proposal network-based CNN
  • Mask R-CNN - Instance segmentation with CNN
  • Instance segmentation in code
  • Creating the environment
  • Installing Python dependencies (Python2 environment)
  • Downloading and installing the COCO API and detectron library (OS shell commands)
  • Preparing the COCO dataset folder structure
  • Running the pre-trained model on the COCO dataset
  • References
  • Summary
  • Chapter 8: GAN: Generating New Images with CNN
  • Pix2pix - Image-to-Image translation GAN
  • CycleGAN
  • Training a GAN model
  • GAN - code example
  • Calculating loss
  • Adding the optimizer
  • Semi-supervised learning and GAN
  • Feature matching
  • Semi-supervised classification using a GAN example
  • Deep convolutional GAN
  • Batch normalization
  • Summary
  • Chapter 9: Attention Mechanism for CNN and Visual Models
  • Attention mechanism for image captioning
  • Types of Attention
  • Hard Attention
  • Soft Attention
  • Using attention to improve visual models
  • Reasons for sub-optimal performance of visual CNN models
  • Recurrent models of visual attention
  • Applying the RAM on a noisy MNIST sample
  • Glimpse Sensor in code
  • References
  • Summary
  • Other Books You May Enjoy
  • Index.