Data science with Raspberry Pi real-time applications using a localized cloud

Detalles Bibliográficos
Otros Autores: Kadhar, Abdul, author (author), Ānand, Ji, author
Formato: Libro electrónico
Idioma:Inglés
Publicado: New York, New York : Apress Media LLC [2021]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009631584406719
Tabla de Contenidos:
  • Intro
  • Table of Contents
  • About the Authors
  • About the Technical Reviewer
  • Acknowledgments
  • Introduction
  • Chapter 1: Introduction to Data Science
  • Importance of Data Types in Data Science
  • Data Science: An Overview
  • Data Requirements
  • Data Acquisition
  • Data Preparation
  • Data Processing
  • Data Cleaning
  • Duplicates
  • Human or Machine Errors
  • Missing Values
  • Outliers
  • Transforming the Data
  • Data Visualization
  • Data Analysis
  • Modeling and Algorithms
  • Report Generation/Decision-Making
  • Recent Trends in Data Science
  • Automation in Data Science
  • Artificial Intelligence-Based Data Analyst
  • Cloud Computing
  • Edge Computing
  • Natural Language Processing
  • Why Data Science on the Raspberry Pi?
  • Chapter 2: Basics of Python Programming
  • Why Python?
  • Python Installation
  • Python IDEs
  • PyCharm
  • Spyder
  • Jupyter Notebook
  • Python Programming with IDLE
  • Python Comments
  • Python Data Types
  • Numeric Data Types
  • int
  • float
  • complex
  • bool
  • Numeric Operators
  • Sequence Data Types
  • list
  • tuple
  • str
  • set
  • dict
  • Type Conversion
  • Control Flow Statements
  • if Statement
  • if-else Statement
  • if...elif...else statement
  • while loop
  • for loop
  • Exception Handling
  • Functions
  • Python Libraries for Data Science
  • NumPy and SciPy for Scientific Computation
  • Scikit-Learn for Machine Learning
  • Pandas for Data Analysis
  • TensorFlow for Machine Learning
  • Chapter 3: Introduction to the Raspberry Pi
  • What Can You Do with the Raspberry Pi?
  • Physical Computing with the Raspberry Pi
  • How to Program the Raspberry Pi?
  • Raspberry Pi Hardware
  • System on a Chip
  • Raspberry Pi RAM
  • Connectivity
  • Setting Up the Raspberry Pi
  • microSD Memory Card
  • Installing the OS
  • Inserting the microSD Memory Card
  • Connecting a Keyboard and Mouse
  • Connecting a Monitor.
  • Powering the Raspberry Pi
  • Raspberry Pi Enclosure
  • Raspberry Pi Versions
  • Raspberry Pi 1
  • Raspberry Pi 2
  • Raspberry Pi 3
  • Raspberry Pi Zero (W/WH)
  • Raspberry Pi 4
  • Recommended Raspberry Pi Version
  • Interfacing the Raspberry Pi with Sensors
  • GPIO Pins
  • GPIO Pinout
  • GPIO Outputs
  • Controlling GPIO Output with Python
  • GPIO Input Signals
  • Reading GPIO Inputs with Python
  • Digital Signals from Sensors
  • Analog Signals from Sensors
  • Interfacing a Ultrasonic Sensor with the  Raspberry Pi
  • Interfacing the Temperature and Humidity Sensor with the Raspberry Pi
  • Interfacing the Soil Moisture Sensor with the Raspberry Pi
  • Interfacing Cameras with the Raspberry Pi
  • Raspberry Pi as an Edge Device
  • Edge Computing in Self-Driving Cars
  • What Is an Edge Device?
  • Edge Computing with the Raspberry Pi
  • Raspberry Pi as a Localized Cloud
  • Cloud Computing
  • Raspberry Pi as Localized Cloud
  • Connecting an External Hard Drive
  • Connecting USB Accelerator
  • Chapter 4: Sensors and Signals
  • Signals
  • Analog and Digital Signals
  • Continuous-Time and Discrete-Time Signals
  • Deterministic and Nondeterministic Signals
  • One-Dimensional, Two-Dimensional, and Multidimensional Signals
  • Gathering Real-Time Data
  • Data Acquisition
  • Sensors
  • Analog Sensors
  • Digital Sensors
  • What Is Real-Time Data?
  • Real-Time Data Analytics
  • Getting Real-Time Distance Data from an Ultrasonic Sensor
  • Interfacing an Ultrasonic Sensor with the Raspberry Pi
  • Getting Real-Time Image Data from a Camera
  • Getting Real-Time Video from a Webcam
  • Getting Real-Time Video from Pi-cam
  • Data Transfer
  • Serial and Parallel Communication
  • Interfacing an Arduino with the Raspberry Pi
  • Serial via USB
  • Serial via GPIOs
  • Data Transmission Between an Arduino and the Raspberry Pi
  • Arduino Code
  • Raspberry Pi Python Code.
  • Time-Series Data
  • Time-Series Analysis and Forecasting
  • Memory Requirements
  • More Storage
  • More RAM
  • Case Study: Gathering the Real-Time Industry Data
  • Storing Collected Data Using Pandas
  • Dataframes
  • Saving Data as a CSV File
  • Saving as an Excel File
  • Reading Saved Data Files
  • Adding the Date and Time to the Real-Time Data
  • Industry Data from the Temperature and Humidity Sensor
  • Chapter 5: Preparing the Data
  • Pandas and Data Structures
  • Installing and Using Pandas
  • Pandas Data Structures
  • Series
  • DataFrame
  • Reading Data
  • Reading CSV Data
  • Reading Excel Data
  • Reading URL Data
  • Cleaning the Data
  • Handling Missing Values
  • Handling Outliers
  • Z-Score
  • Filtering Out Inappropriate Values
  • Removing Duplicates
  • Chapter 6: Visualizing the Data
  • Matplotlib Library
  • Scatter Plot
  • Line Plot
  • Histogram
  • Bar Chart
  • Pie Chart
  • Other Plots and Packages
  • Chapter 7: Analyzing the Data
  • Exploratory Data Analysis
  • Choosing a Dataset
  • Modifying the Columns in the Dataset
  • Statistical Analysis
  • Uniform Distribution
  • Binomial Distribution
  • Normal Distribution
  • Statistical Analysis of Boston Housing Price Dataset
  • Chapter 8: Learning from Data
  • Forecasting from Data Using Regression
  • Linear Regression using Scikit-Learn
  • Principal Component Analysis
  • Outlier Detection Using K-Means Clustering
  • Chapter 9: Case Studies
  • Case Study 1: Human Emotion Classification
  • Methodology
  • Dataset
  • Interfacing the Raspberry Pi with MindWave Mobile via Bluetooth
  • Data Collection Process
  • Features Taken from the Brain Wave Signal
  • Unstructured Data to Structured Dataset
  • Exploratory Data Analysis from the EEG Data
  • Classifying the Emotion Using Learning Models
  • Case Study 2: Data Science for Image Data
  • Exploratory Image Data Analysis.
  • Preparing the Image Data for Model
  • Object Detection Using a Deep Neural Network
  • Case Study 3: Industry 4.0
  • Raspberry Pi as a Localized Cloud for Industry 4.0
  • Collecting Data from Sensors
  • Preparing the Industry Data in the Raspberry Pi
  • Exploratory Data Analysis for the Real-Time Sensor Data
  • Visualizing the Real-Time Sensor Data
  • Report Generation by Reading Bar Codes Using Vision Cameras
  • Transmitting Files or Data from the Raspberry Pi to the Computer
  • References
  • Index.