Lithium sulfur batteries

A guide to lithium sulfur batteries that explores their materials, electrochemical mechanisms and modelling and includes recent scientific developments Lithium Sulfur Batteries (Li-S) offers a comprehensive examination of Li-S batteries from the viewpoint of the materials used in their construction,...

Descripción completa

Detalles Bibliográficos
Otros Autores: Offer, Greg, 1978- editor (editor), Wild, Mark, 1974- editor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, New Jersey : Wiley 2019.
Edición:1st edition
Colección:THEi Wiley ebooks.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009631554706719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Preface
  • Part I Materials
  • Chapter 1 Electrochemical Theory and Physics
  • 1.1 Overview of a LiS cell
  • 1.2 The Development of the Cell Voltage
  • 1.2.1 Using the Electrochemical Potential
  • 1.2.2 Electrochemical Reactions
  • 1.2.3 The Electric Double Layer
  • 1.2.4 Reaction Equilibrium
  • 1.2.5 A Finite Electrolyte
  • 1.2.6 The Need for a Second Electrode
  • 1.3 Allowing a Current to Flow
  • 1.3.1 The Reaction Overpotential
  • 1.3.2 The Transport Overpotential
  • 1.3.3 General Comments on the Overpotentials
  • 1.4 Additional Processes Which Define the Behavior of a LiS Cell
  • 1.4.1 Multiple Electrochemical Reactions at One Surface
  • 1.4.2 Chemical Reactions
  • 1.4.3 Species Solubility and Indirect Reaction Effects
  • 1.4.4 Transport Limitations in the Cathode
  • 1.4.5 The Active Surface Area
  • 1.4.6 Precipitate Accumulation
  • 1.4.7 Electrolyte Viscosity, Conductivity, and Species Transport
  • 1.4.8 Side Reactions and SEI Formation at the Anode
  • 1.4.9 Anode Morphological Changes
  • 1.4.10 Polysulfide Shuttle
  • 1.5 Summary
  • References
  • Chapter 2 Sulfur Cathodes
  • 2.1 Cathode Design Criteria
  • 2.1.1 Overview of Cathode Components and Composition
  • 2.1.2 Cathode Design: Role of Electrolyte in Sulfur Cathode Chemistry
  • 2.1.3 Cathode Design: Impact on Energy Density on Cell Level
  • 2.1.4 Cathode Design: Impact on Cycle Life and Self‐discharge
  • 2.1.5 Cathode Design: Impact on Rate Capability
  • 2.2 Cathode Materials
  • 2.2.1 Properties of Sulfur
  • 2.2.2 Porous and Nanostructured Carbons as Conductive Cathode Scaffolds
  • 2.2.2.1 Graphite‐Like Carbons
  • 2.2.2.2 Synthesis of Graphite‐like Carbons
  • 2.2.2.3 Carbon Black
  • 2.2.2.4 Activated Carbons
  • 2.2.2.5 Carbide‐Derived Carbon
  • 2.2.2.6 Hard‐Template‐Assisted Carbon Synthesis
  • 2.2.2.7 Carbon Surface Chemistry.
  • 2.2.3 Carbon/Sulfur Composite Cathodes
  • 2.2.3.1 Microporous Carbons
  • 2.2.3.2 Mesoporous Carbons
  • 2.2.3.3 Macroporous Carbons and Nanotube-based Cathode Systems
  • 2.2.3.4 Hierarchical Mesoporous Carbons
  • 2.2.3.5 Hierarchical Microporous Carbons
  • 2.2.3.6 Hollow Carbon Spheres
  • 2.2.3.7 Graphene
  • 2.2.4 Retention of LiPS by Surface Modifications and Coating
  • 2.2.4.1 Metal Oxides as Adsorbents for Lithium Polysulfides
  • 2.3 Cathode Processing
  • 2.3.1 Methods for C/S Composite Preparation
  • 2.3.2 Wet (Organic, Aqueous) and Dry Coating for Cathode Production
  • 2.3.3 Alternative Cathode Support Concepts (Carbon Current Collectors, Binder‐free Electrodes)
  • 2.3.4 Processing Perspective for Carbons, Binders, and Additives
  • 2.4 Conclusions
  • References
  • Chapter 3 Electrolyte for Lithium-Sulfur Batteries
  • 3.1 The Case for Better Batteries
  • 3.2 Li-S Battery: Origins and Principles
  • 3.3 Solubility of Species and Electrochemistry
  • 3.4 Liquid Electrolyte Solutions
  • 3.5 Modified Liquid Electrolyte Solutions
  • 3.5.1 Variation in Electrolyte Salt Concentration
  • 3.5.2 Mixed Organic-Ionic Liquid Electrolyte Solutions
  • 3.5.3 Ionic Liquid Electrolyte Solutions
  • 3.6 Solid and Solidified Electrolyte Configurations
  • 3.6.1 Polymer Electrolytes
  • 3.6.1.1 Absorbed Liquid/Gelled Electrolyte
  • 3.6.1.2 Solid Polymer Electrolytes
  • 3.6.2 Non‐polymer Solid Electrolytes
  • 3.7 Challenges of the Cathode and Solvent for Device Engineering
  • 3.7.1 The Cathode Loading Challenge
  • 3.7.2 Cathode Wetting Challenge
  • 3.8 Concluding Remarks and Outlook
  • References
  • Chapter 4 Anode-Electrolyte Interface
  • 4.1 Introduction
  • 4.2 SEI Formation
  • 4.3 Anode Morphology
  • 4.4 Polysulfide Shuttle
  • 4.5 Electrolyte Additives for Stable SEI Formation
  • 4.6 Barrier Layers on the Anode
  • 4.7 A Systemic Approach
  • References.
  • Part II Mechanisms
  • Chapter 5 Molecular Level Understanding of the Interactions Between Reaction Intermediates of Li-S Energy Storage Systems and Ether Solvents
  • 5.1 Introduction
  • 5.2 Computational Details
  • 5.3 Results and Discussions
  • 5.3.1 Reactivity of Li-S Intermediates with Dimethoxy Ethane (DME)
  • 5.3.2 Kinetic Stability of Ethers in the Presence of Lithium Polysulfide
  • 5.3.3 Linear Fluorinated Ethers
  • 5.4 Summary and Conclusions
  • Acknowledgments
  • References
  • Chapter 6 Lithium Sulfide
  • 6.1 Introduction
  • 6.2 Li2S as the End Discharge Product
  • 6.2.1 General
  • 6.2.2 Discharge Product: Li2S or Li2S2/Li2S?
  • 6.2.3 A Survey of Experimental and Theoretical Findings Involving Li2S and Li2S2 Formation and Proposed Reduction Pathways
  • 6.2.4 Mechanistic Insight into Li2S/Li2S2 Nucleation and Growth
  • 6.2.5 Strategies to Limit Li2S Precipitation and Enhance the Capacity
  • 6.2.6 Charge Mechanism and its Difficulties
  • 6.3 Li2S‐Based Cathodes: Toward a Li Ion System
  • 6.3.1 General
  • 6.3.2 Initial Activation of Li2S - Mechanism of First Charge
  • 6.3.3 Recent Developments in Li2S Cathodes for Improved Performances
  • 6.4 Summary
  • References
  • Chapter 7 Degradation in Lithium-Sulfur Batteries
  • 7.1 Introduction
  • 7.2 Degradation Processes Within a Lithium-Sulfur Cell
  • 7.2.1 Degradation at Cathode
  • 7.2.2 Degradation at Anode
  • 7.2.3 Degradation in Electrolyte
  • 7.2.4 Degradation Due to Operating Conditions: Temperature, C‐Rates, and Pressure
  • 7.2.5 Degradation Due to Geometry: Scale‐Up and Topology
  • 7.3 Capacity Fade Models
  • 7.3.1 Dendrite Models
  • 7.3.2 Equivalent Circuit Network Models
  • 7.4 Methods of Detecting and Measuring Degradation
  • 7.4.1 Incremental Capacity Analysis
  • 7.4.2 Differential Thermal Voltammetry
  • 7.4.3 Electrochemical Impedance Spectroscopy
  • 7.4.4 Resistance Curves.
  • 7.4.5 Macroscopic Indicators
  • 7.5 Methods for Countering Degradation
  • 7.6 Future Direction
  • References
  • Part III Modeling
  • Chapter 8 Lithium-Sulfur Model Development
  • 8.1 Introduction
  • 8.2 Zero‐Dimensional Model
  • 8.2.1 Model Formulation
  • 8.2.1.1 Electrochemical Reactions
  • 8.2.1.2 Shuttle and Precipitation
  • 8.2.1.3 Time Evolution of Species
  • 8.2.1.4 Model Implementation
  • 8.2.2 Basic Charge/Discharge Behaviors
  • 8.3 Modeling Voltage Loss in Li-S Cells
  • 8.3.1 Electrolyte Resistance
  • 8.3.2 Anode Potential
  • 8.3.3 Surface Passivation
  • 8.3.4 Transport Limitation
  • 8.4 Higher Dimensional Models
  • 8.4.1 One‐Dimensional Models
  • 8.4.2 Multi‐Scale Models
  • 8.5 Summary
  • References
  • Chapter 9 Battery Management Systems - State Estimation for Lithium-Sulfur Batteries
  • 9.1 Motivation
  • 9.1.1 Capacity
  • 9.1.2 State of Charge (SoC)
  • 9.1.3 State of Health (SoH)
  • 9.1.4 Limitations of Existing Battery State Estimation Techniques
  • 9.1.4.1 SoC Estimation from ``Coulomb Counting''
  • 9.1.4.2 SoC Estimation from Open‐Circuit Voltage (OCV)
  • 9.1.5 Direction of Current Work
  • 9.2 Experimental Environment for Li-S Algorithm Development
  • 9.2.1 Pulse Discharge Tests
  • 9.2.2 Driving Cycle Tests
  • 9.3 State Estimation Techniques from Control Theory
  • 9.3.1 Electrochemical Models
  • 9.3.2 Equivalent Circuit Network (ECN) Models
  • 9.3.3 Kalman Filters and Their Derivatives
  • 9.4 State Estimation Techniques from Computer Science
  • 9.4.1 ANFIS as a Modeling Tool
  • 9.4.2 Human Knowledge and Fuzzy Inference Systems (FIS)
  • 9.4.3 Adaptive Neuro‐Fuzzy Inference Systems
  • 9.4.4 State‐of‐Charge Estimation Using ANFIS
  • 9.5 Conclusions and Further Directions
  • Acknowledgments
  • References
  • Part IV Application
  • Chapter 10 Commercial Markets for Li-S
  • 10.1 Technology Strengths Meet Market Needs
  • 10.1.1 Weight.
  • 10.1.2 Safety
  • 10.1.3 Cost
  • 10.1.4 Temperature Tolerance
  • 10.1.5 Shipment and Storage
  • 10.1.6 Power Characteristics
  • 10.1.7 Environmentally Friendly Technology (Clean Tech)
  • 10.1.8 Pressure Tolerance
  • 10.1.9 Control
  • 10.2 Electric Aircraft
  • 10.3 Satellites
  • 10.4 Cars
  • 10.5 Buses
  • 10.6 Trucks
  • 10.7 Electric Scooter and Electric Bikes
  • 10.8 Marine
  • 10.9 Energy Storage
  • 10.10 Low‐Temperature Applications
  • 10.11 Defense
  • 10.12 Looking Ahead
  • 10.13 Conclusion
  • Chapter 11 Battery Engineering
  • 11.1 Mechanical Considerations
  • 11.2 Thermal and Electrical Considerations
  • References
  • Chapter 12 Case Study
  • 12.1 Introduction
  • 12.2 A Potted History of Eternal Solar Flight
  • 12.3 Why Has It Been So Difficult?
  • 12.4 Objectives of HALE UAV
  • 12.4.1 Stay Above the Cloud
  • 12.4.2 Stay Above the Wind
  • 12.4.3 Stay in the Sun
  • 12.4.4 Year‐Round Markets
  • 12.4.5 Seasonal Markets
  • 12.4.6 How Valuable Are These Markets and What Does That Mean for the Battery?
  • 12.5 Worked Example - HALE UAV
  • 12.6 Cells, Batteries, and Real Life
  • 12.6.1 Cycle Life, Charge, and Discharge Rates
  • 12.6.2 Payload
  • 12.6.3 Avionics
  • 12.6.4 Temperature
  • 12.6.5 End‐of‐Life Performance
  • 12.6.6 Protection
  • 12.6.7 Balancing - Useful Capacity
  • 12.6.8 Summary of Real‐World Issues
  • 12.7 A Quick Aside on Regenerative Fuel Cells
  • 12.8 So What Do We Need from Our Battery Suppliers?
  • 12.9 The Challenges for Battery Developers
  • 12.10 The Answer to the Title
  • 12.11 Summary
  • Acknowledgments
  • References
  • Index
  • EULA.