Computational continuum mechanics

An updated and expanded edition of the popular guide to basic continuum mechanics and computational techniques This updated third edition of the popular reference covers state-of-the-art computational techniques for basic continuum mechanics modeling of both small and large deformations. Approaches...

Descripción completa

Detalles Bibliográficos
Otros Autores: Shabana, Ahmed A., 1951- author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, New Jersey : Wiley 2018.
Edición:Third edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009631512406719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Preface
  • Chapter 1 Introduction
  • 1.1 Matrices
  • Definitions
  • Determinant
  • Inverse and Orthogonality
  • Matrix Operations
  • 1.2 Vectors
  • Dot Product
  • Cross Product
  • Dyadic Product
  • Projection
  • 1.3 Summation Convention
  • Unit Dyads
  • 1.4 Cartesian Tensors
  • Double Product or Double Contraction
  • Invariants of the Second-Order Tensor
  • Symmetric Tensors
  • Higher-Order Tensors
  • 1.5 Polar Decomposition Theorem
  • Other Decompositions
  • 1.6 D'Alembert's Principle
  • Particle Mechanics
  • Rigid-Body Kinematics
  • Application of D'Alembert's Principle
  • Continuum Forces
  • 1.7 Virtual Work Principle
  • Relationship with D'Alembert's Principle
  • 1.8 Approximation Methods
  • 1.9 Discrete Equations
  • 1.10 Momentum, Work, and Energy
  • Linear and Angular Momentum
  • Work and Energy
  • 1.11 Parameter Change and Coordinate Transformation
  • Change of Parameters
  • Coordinate Transformation
  • Deformation and Strains
  • Position Vector Gradients and Rigid Body Kinematics
  • Problems
  • Chapter 2 Kinematics
  • 2.1 Motion Description
  • Line Elements
  • Rigid-Body Motion
  • Floating Frame of Reference (FFR)
  • Displacement Vector Gradients
  • 2.2 Strain Components
  • Geometric Interpretation of the Strains
  • Eulerian Strain Tensor
  • 2.3 Other Deformation Measures
  • Right and Left Cauchy-Green Deformation Tensors
  • Infinitesimal Strain Tensor
  • 2.4 Decomposition of Displacement
  • Homogeneous Motion
  • Nonhomogeneous Motion
  • 2.5 Velocity and Acceleration
  • Eulerian Description
  • Rate of Deformation and Spin Tensors
  • Rate of Change of the Green-Lagrange Strain
  • 2.6 Coordinate Transformation
  • Strain Transformation
  • Gradients and Strains
  • Principal Strains
  • Strain Invariants
  • 2.7 Objectivity
  • 2.8 Change of Volume and Area
  • Volume
  • Area.
  • 2.9 Continuity Equation
  • 2.10 Reynolds' Transport Theorem
  • 2.11 Examples of Deformation
  • Planar Displacement
  • Extension and Stretch
  • Shear Deformation
  • 2.12 Geometry Concepts
  • Problems
  • Chapter 3 Forces and Stresses
  • 3.1 Equilibrium of Forces
  • 3.2 Transformation of Stresses
  • 3.3 Equations of Equilibrium
  • 3.4 Symmetry of the cauchy Stress Tensor
  • Principal Stresses
  • 3.5 Virtual Work of the Forces
  • Tensor Double Product (Contraction)
  • Volume Change
  • Virtual Work
  • Other Stress Measures
  • First and Second Piola-Kirchhoff Stress Tensors
  • Notation and Procedure
  • Surface Forces
  • Total and Updated Lagrangian Formulations
  • Physical Interpretation
  • 3.6 Deviatoric Stresses
  • 3.7 Stress Objectivity
  • Stress Rate
  • Truesdell Stress Rate o
  • Oldroyd and Convective Stress Rates o and o
  • Green-Naghdi Stress Rate
  • Jaumann Stress Rate
  • 3.8 Energy Balance
  • Problems
  • Chapter 4 Constitutive Equations
  • 4.1 Generalized Hooke's Law
  • 4.2 Anisotropic Linearly Elastic Materials
  • 4.3 Material Symmetry
  • Reflection
  • Rotations
  • 4.4 Homogeneous Isotropic Material
  • Poisson Effect and Locking
  • Stress and Strain Invariants
  • Plane-Stress and Plane-Strain Problems
  • Finite Dimensional Model
  • Generalized Elastic Forces
  • Homogeneous Displacement
  • 4.5 Principal Strain Invariants
  • 4.6 Special Material Models for Large Deformations
  • Compressible Neo-Hookean Material Models
  • Incompressible Mooney-Rivlin Materials
  • Objectivity
  • 4.7 Linear Viscoelasticity
  • One-Dimensional Model
  • Other Viscoelastic Models
  • Generalization
  • Elastic Energy and Dissipation
  • Another Form of the Viscoelastic Equations
  • Three-Dimensional Linear Viscoelasticity
  • 4.8 Nonlinear Viscoelasticity
  • Another Model
  • 4.9 A Simple Viscoelastic Model for Isotropic Materials
  • 4.10 Fluid Constitutive Equations.
  • 4.11 Navier-Stokes Equations
  • Problems
  • Chapter 5 Finite Element Formulation: Large-Deformation, Large-Rotation Problem
  • Small- and Large-Deformation Problems
  • Absolute Nodal Coordinate Formulation (ANCF)
  • Organization
  • 5.1 Displacement Field
  • Separation of Variables
  • Modes of Displacement
  • Nodal Coordinates
  • 5.2 Element Connectivity
  • 5.3 Inertia and Elastic Forces
  • Inertia Forces
  • Elastic Forces
  • 5.4 Equations of Motion
  • Curved Geometry
  • 5.5 Numerical Evaluation of the Elastic Forces
  • Gaussian Quadrature
  • Generalization
  • 5.6 Finite Elements and Geometry
  • General Continuum Mechanics Approach and Classical Theories
  • Gradient Vectors
  • Locking Problems
  • Theory of Curves
  • Theory of Surfaces
  • Surface Curvature
  • 5.7 Two-Dimensional Euler-Bernoulli Beam Element
  • Kinematics of the Element
  • Formulation of the Element Elastic Forces
  • Special Case
  • 5.8 Two-Dimensional Shear Deformable Beam Element
  • Formulation of the Elastic Forces
  • 5.9 Three-Dimensional Cable Element
  • 5.10 Three-Dimensional Beam Element
  • 5.11 Thin-Plate Element
  • 5.12 Higher-Order Plate Element
  • 5.13 Brick Element
  • 5.14 Element Performance
  • Patch Test
  • Locking Problem
  • Reduced Integration
  • 5.15 Other Finite Element Formulations
  • Isoparametric Finite Elements
  • Use of Infinitesimal Rotation Coordinates
  • Use of Finite Rotation Coordinates
  • 5.16 Updated Lagrangian and Eulerian Formulations
  • 5.17 Concluding Remarks
  • ANCF Finite Elements
  • Constrained Motion
  • ANCF Reference Node
  • Deformation Modes
  • Problems
  • Chapter 6 Finite Element Formulation: Small-Deformation, Large-Rotation Problem
  • 6.1 Background
  • Rigid-Body Motion
  • Translations
  • 6.2 Rotation and Angular Velocity
  • Identities
  • General Displacement
  • Illustrative Example
  • Euler Angles Singularity.
  • 6.3 Floating Frame of Reference (FFR)
  • 6.4 Intermediate Element Coordinate System
  • 6.5 Connectivity and Reference Conditions
  • Connectivity Conditions
  • Reference Conditions
  • Rigid-Body and Reference Motion
  • 6.6 Kinematic Equations
  • 6.7 Formulation of the Inertia Forces
  • Body Inertia Shape Integrals
  • 6.8 Elastic Forces
  • 6.9 Equations of Motion
  • 6.10 Coordinate Reduction
  • 6.11 Integration of Finite Element and Multibody System Algorithms
  • Linear Theory of Elastodynamics
  • Nodal and Modal Coordinates
  • Numerical Evaluation of the Inertia Shape Integrals
  • Scaling of the Modal Coordinates
  • Limitations of the FFR Formulation
  • Problems
  • Chapter 7 Computational Geometry and Finite Element Analysis
  • 7.1 Geometry and Finite Element Method
  • Bezier Geometry
  • B-Spline Geometry
  • NURBS Geometry
  • 7.2 Ancf Geometry
  • ANCF Element Geometry
  • Control-Point Representation
  • 7.3 Bezier Geometry
  • 7.4 B-Spline Curve Representation
  • Control Points and Degree of Continuity
  • Illustrative Example
  • Knot Insertion
  • Comparison with FE Formulations
  • 7.5 Conversion of B-Spline Geometry to ANCF Geometry
  • 7.6 ANCF and B-Spline Surfaces
  • B-Spline Surfaces
  • ANCF Surfaces
  • 7.7 Structural and Nonstructural Discontinuities
  • B-Spline Model
  • ANCF Model
  • Problems
  • Chapter 8 Plasticity Formulations
  • 8.1 One-Dimensional Problem
  • 8.2 Loading and Unloading Conditions
  • 8.3 Solution of the Plasticity Equations
  • Numerical Solution
  • Plasticity Equations
  • Trial Step
  • The Return Mapping Algorithm
  • 8.4 Generalization of the Plasticity Theory: Small Strains
  • Associative Plasticity
  • Numerical Solution of the Plasticity Equations
  • Explicit Solution
  • Implicit Solution
  • 8.5 J2 Flow Theory with Isotropic/Kinematic Hardening
  • Nonlinear Isotropic/Kinematic Hardening.
  • Return Mapping Algorithm for Nonlinear Isotropic/Kinematic Hardening
  • Linear Kinematic/Isotropic Hardening
  • 8.6 Nonlinear Formulation for Hyperelastic-Plastic Materials
  • Multiplicative Decomposition
  • Hyperelastic Potential
  • Rate of Deformation Tensors
  • Flow Rule and Hardening Law
  • Numerical Solution
  • Rate-Dependent Plasticity
  • 8.7 Hyperelastic-Plastic J2 Flow Theory
  • Problems
  • References
  • Index
  • EULA.