Statistical signal processing in engineering
A problem-solving approach to statistical signal processing for practicing engineers, technicians, and graduate students This book takes a pragmatic approach in solving a set of common problems engineers and technicians encounter when processing signals. In writing it, the author drew on his vast t...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
Wiley
2018.
|
Edición: | 1st edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009631502906719 |
Tabla de Contenidos:
- Intro
- Title Page
- Copyright Page
- Contents
- List of Figures
- List of Tables
- Preface
- List of Abbreviations
- How to Use the Book
- About the Companion Website
- Prerequisites
- Why are there so many matrixes in this book?
- Chapter 1 Manipulations on Matrixes
- 1.1 Matrix Properties
- 1.1.1 Elementary Operations
- 1.2 Eigen-Decompositions
- 1.3 Eigenvectors in Everyday Life
- 1.3.1 Conversations in a Noisy Restaurant
- 1.3.2 Power Control in a Cellular Communication System
- 1.3.3 Price Equilibrium in the Economy
- 1.4 Derivative Rules
- 1.4.1 Derivative with respect to x∈ Rn
- 1.4.2 Derivative with respect to x∈ Cn
- 1.4.3 Derivative with respect to the Matrix X∈Rm×n
- 1.5 Quadratic Forms
- 1.6 Diagonalization of a Quadratic Form
- 1.7 Rayleigh Quotient
- 1.8 Basics of Optimization
- 1.8.1 Quadratic Function with Simple Linear Constraint (M=1)
- 1.8.2 Quadratic Function with Multiple Linear Constraints
- Appendix A: Arithmetic vs. Geometric Mean
- Chapter 2 Linear Algebraic Systems
- 2.1 Problem Definition and Vector Spaces
- 2.1.1 Vector Spaces in Tomographic Radiometric Inversion
- 2.2 Rotations
- 2.3 Projection Matrixes and Data-Filtering
- 2.3.1 Projections and Commercial FM Radio
- 2.4 Singular Value Decomposition (SVD) and Subspaces
- 2.4.1 How to Choose the Rank of A?
- 2.5 QR and Cholesky Factorization
- 2.6 Power Method for Leading Eigenvectors
- 2.7 Least Squares Solution of Overdetermined Linear Equations
- 2.8 Efficient Implementation of the LS Solution
- 2.9 Iterative Methods
- Chapter 3 Random Variables in Brief
- 3.1 Probability Density Function (pdf), Moments, and Other Useful Properties
- 3.2 Convexity and Jensen Inequality
- 3.3 Uncorrelatedness and Statistical Independence
- 3.4 Real-Valued Gaussian Random Variables.
- 3.5 Conditional pdf for Real-Valued Gaussian Random Variables
- 3.6 Conditional pdf in Additive Noise Model
- 3.7 Complex Gaussian Random Variables
- 3.7.1 Single Complex Gaussian Random Variable
- 3.7.2 Circular Complex Gaussian Random Variable
- 3.7.3 Multivariate Complex Gaussian Random Variables
- 3.8 Sum of Square of Gaussians: Chi-Square
- 3.9 Order Statistics for N rvs
- Chapter 4 Random Processes and Linear Systems
- 4.1 Moment Characterizations and Stationarity
- 4.2 Random Processes and Linear Systems
- 4.3 Complex-Valued Random Processes
- 4.4 Pole-Zero and Rational Spectra (Discrete-Time)
- 4.4.1 Stability of LTI Systems
- 4.4.2 Rational PSD
- 4.4.3 Paley-Wiener Theorem
- 4.5 Gaussian Random Process (Discrete-Time)
- 4.6 Measuring Moments in Stochastic Processes
- Appendix A: Transforms for Continuous-Time Signals
- Appendix B: Transforms for Discrete-Time Signals
- Chapter 5 Models and Applications
- 5.1 Linear Regression Model
- 5.2 Linear Filtering Model
- 5.2.1 Block-Wise Circular Convolution
- 5.2.2 Discrete Fourier Transform and Circular Convolution Matrixes
- 5.2.3 Identification and Deconvolution
- 5.3 MIMO systems and Interference Models
- 5.3.1 DSL System
- 5.3.2 MIMO in Wireless Communication
- 5.4 Sinusoidal Signal
- 5.5 Irregular Sampling and Interpolation
- 5.5.1 Sampling With Jitter
- 5.6 Wavefield Sensing System
- Chapter 6 Estimation Theory
- 6.1 Historical Notes
- 6.2 Non-Bayesian vs. Bayesian
- 6.3 Performance Metrics and Bounds
- 6.3.1 Bias
- 6.3.2 Mean Square Error (MSE)
- 6.3.3 Performance Bounds
- 6.4 Statistics and Sufficient Statistics
- 6.5 MVU and BLU Estimators
- 6.6 BLUE for Linear Models
- 6.7 Example: BLUE of the Mean Value of Gaussian rvs
- Chapter 7 Parameter Estimation
- 7.1 Maximum Likelihood Estimation (MLE)
- 7.2 MLE for Gaussian Model xN(μ(θ),C(θ)).
- 7.2.1 Additive Noise Model x=s(θ)+w with wN(0,Cw)
- 7.2.2 Additive Noise Model x=H(ω)·α+w with wN(0,Cw)
- 7.2.3 Additive Noise Model with Multiple Observations x=s(θ)+w with wN(0,Cw), Cw Known
- 7.2.3.1 Linear Model = ⋅ +
- 7.2.3.2 Model = ⋅ +
- 7.2.3.3 Model = ( ) ⋅ +
- 7.2.4 Model xN(0,C(θ))
- 7.2.5 Additive Noise Model with Multiple Observations x=s(θ)+w with wN(0,Cw), Cw Unknown
- 7.3 Other Noise Models
- 7.4 MLE and Nuisance Parameters
- 7.5 MLE for Continuous-Time Signals
- 7.5.1 Example: Amplitude Estimation
- 7.5.2 MLE for Correlated Noise Sw(f)
- 7.6 MLE for Circular Complex Gaussian
- 7.7 Estimation in Phase/Frequency Modulations
- 7.7.1 MLE Phase Estimation
- 7.7.2 Phase Locked Loops
- 7.8 Least Squares (LS) Estimation
- 7.8.1 Weighted LS with W = diag{c1,c2,...,cN}
- 7.8.2 LS Estimation and Linear Models
- 7.8.3 Under or Over-Parameterizing?
- 7.8.4 Constrained LS Estimation
- 7.9 Robust Estimation
- Chapter 8 Cramér-Rao Bound
- 8.1 Cramér-Rao Bound and Fisher Information Matrix
- 8.1.1 CRB for Scalar Problem (P=1)
- 8.1.2 CRB and Local Curvature of Log-Likelihood
- 8.1.3 CRB for Multiple Parameters (p≥1)
- 8.2 Interpretation of CRB and Remarks
- 8.2.1 Variance of Each Parameter
- 8.2.2 Compactness of the Estimates
- 8.2.3 FIM for Known Parameters
- 8.2.4 Approximation of the Inverse of FIM
- 8.2.5 Estimation Decoupled From FIM
- 8.2.6 CRB and Nuisance Parameters
- 8.2.7 CRB for Non-Gaussian rv and Gaussian Bound
- 8.3 CRB and Variable Transformations
- 8.4 FIM for Gaussian Parametric Model xN(μ(θ),C(θ))
- 8.4.1 FIM for x=s(θ)+w with wN(0,Cw)
- 8.4.2 FIM for Continuous-Time Signals in Additive White Gaussian Noise
- 8.4.3 FIM for Circular Complex Model
- Appendix A: Proof of CRB
- Appendix B: FIM for GaussianModel
- Appendix C: Some Derivatives for MLE and CRB Computations.
- Chapter 9 MLE and CRB for Some Selected Cases
- 9.1 Linear Regressions
- 9.2 Frequency Estimation x[n]=aocos(ω0n+ϕo)+w[n]
- 9.3 Estimation of Complex Sinusoid
- 9.3.1 Proper, Improper, and Non-Circular Signals
- 9.4 Time of Delay Estimation
- 9.5 Estimation of Max for Uniform pdf
- 9.6 Estimation of Occurrence Probability for Binary pdf
- 9.7 How to Optimize Histograms?
- 9.8 Logistic Regression
- Chapter 10 Numerical Analysis and Montecarlo Simulations
- 10.1 System Identification and Channel Estimation
- 10.1.1 Matlab Code and Results
- 10.2 Frequency Estimation
- 10.2.1 Variable (Coarse/Fine) Sampling
- 10.2.2 Local Parabolic Regression
- 10.2.3 Matlab Code and Results
- 10.3 Time of Delay Estimation
- 10.3.1 Granularity of Sampling in ToD Estimation
- 10.3.2 Matlab Code and Results
- 10.4 Doppler-Radar System by Frequency Estimation
- 10.4.1 EM Method
- 10.4.2 Matlab Code and Results
- Chapter 11 Bayesian Estimation
- 11.1 Additive Linear Model with Gaussian Noise
- 11.1.1 Gaussian A-priori: θN(,σθ2)
- 11.1.2 Non-Gaussian A-Priori
- 11.1.3 Binary Signals: MMSE vs. MAP Estimators
- 11.1.4 Example: Impulse Noise Mitigation
- 11.2 Bayesian Estimation in Gaussian Settings
- 11.2.1 MMSE Estimator
- 11.2.2 MMSE Estimator for Linear Models
- 11.3 LMMSE Estimation and Orthogonality
- 11.4 Bayesian CRB
- 11.5 Mixing Bayesian and Non-Bayesian
- 11.5.1 Linear Model with Mixed Random/Deterministic Parameters
- 11.5.2 Hybrid CRB
- 11.6 Expectation-Maximization (EM)
- 11.6.1 EM of the Sum of Signals in Gaussian Noise
- 11.6.2 EM Method for the Time of Delay Estimation of Multiple Waveforms
- 11.6.3 Remarks
- Chapter 12 Optimal Filtering
- 12.1 Wiener Filter
- 12.2 MMSE Deconvolution (or Equalization)
- 12.3 Linear Prediction
- 12.3.1 Yule-Walker Equations
- 12.4 LS Linear Prediction.
- 12.5 Linear Prediction and AR Processes
- 12.6 Levinson Recursion and Lattice Predictors
- Chapter 13 Bayesian Tracking and Kalman Filter
- 13.1 Bayesian Tracking of State in Dynamic Systems
- 13.1.1 Evolution of the A-Posteriori pdf
- 13.2 Kalman Filter (KF)
- 13.2.1 KF Equations
- 13.2.2 Remarks
- 13.3 Identification of Time-Varying Filters in Wireless Communication
- 13.4 Extended Kalman Filter (EKF) for Non-Linear Dynamic Systems
- 13.5 Position Tracking by Multi-Lateration
- 13.5.1 Positioning and Noise
- 13.5.2 Example of Position Tracking
- 13.6 Non-Gaussian Pdf and Particle Filters
- Chapter 14 Spectral Analysis
- 14.1 Periodogram
- 14.1.1 Bias of the Periodogram
- 14.1.2 Variance of the Periodogram
- 14.1.3 Filterbank Interpretation
- 14.1.4 Pdf of the Periodogram (White Gaussian Process)
- 14.1.5 Bias and Resolution
- 14.1.6 Variance Reduction and WOSA
- 14.1.7 Numerical Example: Bandlimited Process and (Small) Sinusoid
- 14.2 Parametric Spectral Analysis
- 14.2.1 MLE and CRB
- 14.2.2 General Model for AR, MA, ARMA Spectral Analysis
- 14.3 AR Spectral Analysis
- 14.3.1 MLE and CRB
- 14.3.2 A Good Reason to Avoid Over-Parametrization in AR
- 14.3.3 Cramér-Rao Bound of Poles in AR Spectral Analysis
- 14.3.4 Example: Frequency Estimation by AR Spectral Analysis
- 14.4 MA Spectral Analysis
- 14.5 ARMA Spectral Analysis
- 14.5.1 Cramér-Rao Bound for ARMA Spectral Analysis
- Appendix A:Which Sample Estimate of the Autocorrelation to Use?
- Appendix B: Eigenvectors and Eigenvalues of Correlation Matrix
- Appendix C: Property of Monic Polynomial
- Appendix D: Variance of Pole in AR(1)
- Chapter 15 Adaptive Filtering
- 15.1 Adaptive Interference Cancellation
- 15.2 Adaptive Equalization in Communication Systems
- 15.2.1 Wireless Communication Systems in Brief
- 15.2.2 Adaptive Equalization.
- 15.3 Steepest Descent MSE Minimization.