Reliability engineering and services

Offers a holistic approach to guiding product design, manufacturing, and after-sales support as the manufacturing industry transitions from a product-oriented model to service-oriented paradigm This book provides fundamental knowledge and best industry practices in reliability modelling, maintenanc...

Descripción completa

Detalles Bibliográficos
Otros Autores: Jin, Tongdan, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, New Jersey ; Chichester, West Sussex, England : Wiley 2019.
Edición:First edition
Colección:THEi Wiley ebooks.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009631487406719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Series Editor's Foreword
  • Preface
  • Acknowledgement
  • About the Companion Website
  • Chapter 1 Basic Reliability Concepts and Models
  • 1.1 Introduction
  • 1.2 Reliability Definition and Hazard Rate
  • 1.2.1 Managing Reliability for Product Lifecycle
  • 1.2.2 Reliability Is a Probabilistic Measure
  • 1.2.3 Failure Rate and Hazard Rate Function
  • 1.2.4 Bathtub Hazard Rate Curve
  • 1.2.5 Failure Intensity Rate
  • 1.3 Mean Lifetime and Mean Residual Life
  • 1.3.1 Mean‐Time‐to‐Failure
  • 1.3.2 Mean‐Time‐Between‐Failures
  • 1.3.3 Mean‐Time‐Between‐Replacements
  • 1.3.4 Mean Residual Life
  • 1.4 System Downtime and Availability
  • 1.4.1 Mean‐Time‐to‐Repair
  • 1.4.2 System Availability
  • 1.5 Discrete Random Variable for Reliability Modeling
  • 1.5.1 Bernoulli Distribution
  • 1.5.2 Binomial Distribution
  • 1.5.3 Poisson Distribution
  • 1.6 Continuous Random Variable for Reliability Modeling
  • 1.6.1 The Uniform Distribution
  • 1.6.2 The Exponential Distribution
  • 1.6.3 The Weibull Distribution
  • 1.6.4 The Normal Distribution
  • 1.6.5 The Lognormal Distribution
  • 1.6.6 The Gamma Distribution
  • 1.7 Bayesian Reliability Model
  • 1.7.1 Concept of Bayesian Reliability Inference
  • 1.7.2 Bayes Formula
  • 1.8 Markov Model and Poisson Process
  • 1.8.1 Discrete Markov Model
  • 1.8.2 Birth-Death Model
  • 1.8.3 Poisson Process
  • References
  • Chapter 2 Reliability Estimation with Uncertainty
  • 2.1 Introduction
  • 2.2 Reliability Block Diagram
  • 2.3 Series Systems
  • 2.3.1 Reliability of Series System
  • 2.3.2 Mean and Variance of Reliability Estimate
  • 2.4 Parallel Systems
  • 2.4.1 Reliability of Parallel Systems
  • 2.4.2 Mean and Variance of Reliability Estimate
  • 2.5 Mixed Series and Parallel Systems
  • 2.5.1 Series-Parallel System
  • 2.5.2 Parallel-Series System
  • 2.5.3 Mixed Series-Parallel System.
  • 2.6 Systems with k‐out‐of‐n:G Redundancy
  • 2.6.1 Reliability for Hot‐Standby Redundant Systems
  • 2.6.2 Application to Data Storage Systems
  • 2.7 Network Systems
  • 2.7.1 Edge Decomposition
  • 2.7.2 Minimum Cut Set
  • 2.7.3 Minimum Path Set
  • 2.7.4 Linear‐Quadratic Approximation to Terminal‐Pair Reliability
  • 2.7.5 Moments of Terminal‐Pair Reliability Estimate
  • 2.8 Reliability Confidence Intervals
  • 2.8.1 Confidence Interval for Pass/Fail Tests
  • 2.8.2 Confidence Intervals for System Reliability
  • 2.9 Reliability of Multistate Systems
  • 2.9.1 Series or Parallel Systems with Three‐State Components
  • 2.9.2 Universal Generating Function
  • 2.10 Reliability Importance
  • 2.10.1 Marginal Reliability Importance
  • 2.10.2 Joint Reliability Importance Measure
  • 2.10.3 Integrated Importance Measure for Multistate System
  • 2.10.4 Integrated Importance Measure for System Lifetime
  • References
  • Chapter 3 Design and Optimization for Reliability
  • 3.1 Introduction
  • 3.2 Lifecycle Reliability Optimization
  • 3.2.1 Reliability-Design Cost
  • 3.2.2 Reliability-Manufacturing Cost
  • 3.2.3 Minimizing Product Lifecycle Cost
  • 3.3 Reliability and Redundancy Allocation
  • 3.3.1 Reliability Allocation for Cost Minimization
  • 3.3.2 Reliability Allocation under Cost Constraint
  • 3.3.3 Redundancy Allocation for Series System
  • 3.3.4 Redundancy Allocation for k‐out‐of‐n Subsystems
  • 3.4 Multiobjective Reliability-Redundancy Allocation
  • 3.4.1 Pareto Optimality
  • 3.4.2 Maximizing Reliability and Minimizing Variance
  • 3.4.3 Numerical Experiment
  • 3.5 Failure‐in‐Time Based Design
  • 3.5.1 Component Failure Rate Estimate
  • 3.5.2 Component with Life Data
  • 3.5.3 Components without Life Data
  • 3.5.4 Non‐component Failure Rate
  • 3.6 Failure Rate Considering Uncertainty
  • 3.6.1 Temperature Variation
  • 3.6.2 Electrical Derating Variation.
  • 3.7 Fault‐Tree Method
  • 3.7.1 Functional Block Diagram
  • 3.7.2 Fault‐Tree Analysis
  • 3.8 Failure Mode, Effect, and Criticality Analysis
  • 3.8.1 Priority Risk Number
  • 3.8.2 Criticality Analysis
  • 3.9 Case Study: Reliability Design for Six Sigma
  • 3.9.1 Principle of Design for Six Sigma
  • 3.9.2 Implementation of Printed Circuit Board Design
  • References
  • Chapter 4 Reliability Growth Planning
  • 4.1 Introduction
  • 4.2 Classification of Failures
  • 4.3 Failure Mode Types
  • 4.4 No Fault Found (NFF) Failures
  • 4.4.1 The Causes of NFF
  • 4.4.2 The Impact of NFF
  • 4.4.2.1 Equipment Level of Support
  • 4.4.2.2 At the Repair Shop Level of Support
  • 4.4.2.3 In Spare Parts Inventory and Supply Chain
  • 4.5 Corrective Action Effectiveness
  • 4.5.1 Engineering Change Order Versus Retrofit
  • 4.5.2 Corrective Action Effectiveness
  • 4.6 Reliability Growth Model
  • 4.6.1 Duane Postulate
  • 4.6.2 Power Law Model
  • 4.6.3 Trend Test Statistics
  • 4.6.4 Bounded Failure Intensity Model
  • 4.6.5 Bayesian Projection Model
  • 4.7 Reliability Growth and Demonstration Test
  • 4.7.1 Optimal Reliability Growth Test
  • 4.7.2 Reliability Demonstration Test
  • 4.7.2.1 Cumulative Binomial
  • 4.7.2.2 Exponential Chi‐Squared
  • 4.8 Lifecycle Reliability Growth Planning
  • 4.8.1 Reliability Growth of Field Systems
  • 4.8.2 Prediction of Latent Failure Modes
  • 4.8.3 Allocation of Corrective Action Resource
  • 4.9 Case Study
  • 4.9.1 Optimizing Reliability Growth Test of Diesel Engines
  • 4.9.2 Multiphase Reliability Growth Strategy
  • References
  • Chapter 5 Accelerated Stress Testing and Economics
  • 5.1 Introduction
  • 5.2 Design of Accelerated Stress Test
  • 5.2.1 HALT, HASS, and ESS
  • 5.2.2 Types of Accelerating Stresses
  • 5.2.2.1 Environmental Stresses
  • 5.2.2.2 Electrical Stress
  • 5.2.2.3 Mechanical Stress
  • 5.2.2.4 Chemical Stress.
  • 5.2.3 Stress Profiling
  • 5.3 Scale Acceleration Model and Usage Rate
  • 5.3.1 Exponential Accelerated Failure Time Model
  • 5.3.2 Weibull AFT Models
  • 5.3.3 Lognormal AFT Models
  • 5.3.4 Linear Usage Acceleration Model
  • 5.3.5 Miner's Rule under Cyclic Loading
  • 5.4 Arrhenius Model
  • 5.4.1 Accelerated Life Factor
  • 5.4.2 Other Units for Activation Energy
  • 5.5 Eyring Model and Power Law Model
  • 5.5.1 Eyring Model
  • 5.5.2 Inverse Power Law Model
  • 5.6 Semiparametric Acceleration Models
  • 5.6.1 Proportional Hazard Model
  • 5.6.2 PH Model with Weibull Hazard Rate
  • 5.6.3 Logistic Regression Model
  • 5.6.4 Log‐Logistic Regression Model
  • 5.7 Highly Accelerated Stress Screening Testing
  • 5.7.1 Reliability with HASS Versus Non‐HASS
  • 5.7.2 Financial Justification of HASS
  • 5.8 A Case Study for HASS Project
  • 5.8.1 DMAIC in Six Sigma Reliability Program
  • 5.8.2 Define - Financial Analysis and Project Team
  • 5.8.2.1 Financial Analysis
  • 5.8.2.2 Forming a Cross‐Functional Team
  • 5.8.3 Measure - Infant Mortality Distribution
  • 5.8.4 Analyze - Root Cause of Early Failures
  • 5.8.5 Improve - Action Taken
  • 5.8.6 Control - Monitoring and Documentation
  • References
  • Chapter 6 Renewal Theory and Superimposed Renewal
  • 6.1 Introduction
  • 6.2 Renewal Integral Equation
  • 6.2.1 Overview of Renewal Solution Methods
  • 6.2.2 Generic Renewal Function
  • 6.2.3 Renewal in Laplace Transform
  • 6.2.4 Geometric and Geometric‐Type Renewal
  • 6.2.5 Generalized Renewal Process
  • 6.3 Exponential and Erlang Renewal
  • 6.3.1 Exponential Renewal
  • 6.3.2 Erlang Renewal
  • 6.4 Generalized Exponential Renewal
  • 6.4.1 Generalized Exponential Distribution
  • 6.4.2 Renewal in Laplace Transform
  • 6.4.3 Inverse Laplace Transform
  • 6.5 Weibull Renewal with Decreasing Failure Rate
  • 6.5.1 Approximation by Mixed Exponential Functions.
  • 6.5.2 Laplace and Inverse Laplace Transform
  • 6.6 Weibull Renewal with Increasing Failure Rate
  • 6.6.1 Transient Renewal Function
  • 6.6.2 Approximation without Oscillation
  • 6.6.3 Approximation with Oscillation
  • 6.7 Renewal under Deterministic Fleet Expansion
  • 6.7.1 Superimposed Exponential Renewal
  • 6.7.2 Superimposed Erlang Renewal
  • 6.7.3 Lead‐Time Renewal
  • 6.8 Renewal under Stochastic Fleet Expansion
  • 6.8.1 Aggregate Exponential Renewal
  • 6.8.2 Lead‐Time Renewal
  • 6.9 Case Study
  • 6.9.1 Installed Base of Wind Turbines in the USA
  • 6.9.2 Spare Parts Prediction under Fleet Expansion
  • References
  • Chapter 7 Performance‐Based Maintenance
  • 7.1 Introduction
  • 7.2 Corrective Maintenance
  • 7.2.1 Classification of Maintenance Policy
  • 7.2.2 Corrective Maintenance Management
  • 7.3 Preventive Maintenance
  • 7.3.1 Block Replacement
  • 7.3.2 Age‐Based Replacement
  • 7.4 Condition‐Based Maintenance
  • 7.4.1 Principle of Condition‐Based Maintenance
  • 7.4.2 Proportional Hazard Model
  • 7.4.3 Gamma Degradation Process
  • 7.4.4 Stationary Gamma Degradation Process
  • 7.5 Inverse Gaussian Degradation Process
  • 7.5.1 Distribution of Inverse Gaussian Process
  • 7.5.2 Probability Density Function of First Passage Time
  • 7.6 Non‐Stationary Gaussian Degradation Process
  • 7.6.1 The Degradation Model
  • 7.6.2 Hypothesis Testing
  • 7.6.3 Estimation of Remaining Useful Life
  • 7.7 Performance‐Based Maintenance
  • 7.7.1 The Rise of Performance‐Driven Service
  • 7.7.2 Procedures for PBM Implementation
  • 7.7.3 Five Overarching Performance Measures
  • 7.7.4 Reliability and MTBF Considering Usage Rate
  • 7.7.5 Operational Availability under Corrective Maintenance
  • 7.7.6 Operational Availability under Preventive Maintenance
  • 7.8 Contracting for Performance‐Based Logistics
  • 7.8.1 Incentive Payment Schemes.
  • 7.8.2 Game‐Theoretic Contracting Model.