Machine learning and big data with kdb+/q

Upgrade your programming language to more effectively handle high-frequency data Machine Learning and Big Data with KDB+/Q offers quants, programmers and algorithmic traders a practical entry into the powerful but non-intuitive kdb+ database and q programming language. Ideally designed to handle the...

Descripción completa

Detalles Bibliográficos
Otros Autores: Novotny, Jan, 1982- author (author), Bilokon, Paul, author, Galiotos, Aris, author, Deleze, Frederic, author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Chichester, West Sussex, England : Wiley [2020]
Edición:1st edition
Colección:Wiley finance series.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009631482606719
Tabla de Contenidos:
  • Fundamentals of the q programming language
  • Dictionaries and tables : the q fundamentals
  • Functions
  • Editors and other tools
  • Debugging q code
  • Splayed and partitioned tables
  • Joins
  • Parallelisation
  • Data cleaning and filtering
  • Parse trees
  • A few use cases
  • Basic overview of statistics
  • Linear regression
  • Time series econometrics
  • Fourier transform
  • Eigensystem and PCA
  • Outlier detection
  • Simulating asset prices
  • Basic principles of machine learning
  • Linear regression with regularisation
  • Nearest neighbours
  • Neural networks
  • AdaBoost with stumps
  • Trees
  • Forests
  • Unsupervised machine learning : the Apriori algorithm
  • Processing information
  • Towards AI : Monte Carlo tree search
  • Econophysics : the agent-based computational models
  • Epilogue: Art.