Numerical modelling of wave energy converters state-of-the-art techniques for single devices and arrays

Numerical Modelling of Wave Energy Converters: State-of-the Art Techniques for Single WEC and Converter Arrays presents all the information and techniques required for the numerical modelling of a wave energy converter together with a comparative review of the different available techniques. The au...

Descripción completa

Detalles Bibliográficos
Otros Autores: Folley, Matt, author (author), Folley, Matt, editor (editor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Academic Press 2016.
Edición:First edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009631467606719
Tabla de Contenidos:
  • Front Cover
  • Numerical Modelling of Wave Energy Converters: State-of-the-Art Techniques for Single Devices and Arrays
  • Copyright
  • Contents
  • Contributors
  • Chapter 1: Introduction
  • 1.1. The Challenge of Wave Energy
  • 1.2. A Short History of the Numerical Modelling of WECs
  • 1.3. Current Challenges and Future Developments
  • 1.4. Why This Book
  • 1.5. How to Use This Book
  • 1.6. Acknowledgements
  • References
  • Part I: Wave Energy Converter Modelling Techniques Based on Linear Hydrodynamic Theory
  • Chapter 2: Frequency-Domain Models
  • 2.1. Introduction and Fundamental Principles
  • 2.2. Phenomenological Discussion
  • 2.3. Potential Flow Theory
  • 2.3.1. Laplace Equation
  • 2.3.2. Boundary Conditions
  • 2.3.3. Sinusoidal Waves
  • 2.3.4. Problem Decomposition
  • 2.4. Equation of Motion: Single Degree-of-Freedom WEC
  • 2.4.1. Hydrodynamic Force
  • 2.4.1.1. Solving the Potential Flow Boundary Value Problem
  • Wave Excitation Force
  • Radiation Force
  • 2.4.1.2. Haskind Relation
  • 2.4.1.3. Kramers-Kronig Relations
  • 2.4.2. Hydrostatic Force
  • 2.4.3. Reaction Forces
  • 2.4.4. Complex Amplitude of the Body Motion
  • 2.4.5. Power Absorption
  • 2.4.5.1. Mean Power Absorption
  • 2.4.5.2. Optimal PTO Control
  • 2.4.5.3. Suboptimal PTO Control
  • 2.4.5.4. Constrained Motion
  • 2.4.5.5. Absorption Bandwidth
  • 2.5. Equation of Motion: Multiple Degree-of-Freedom WEC
  • 2.6. OWCs
  • 2.7. Limitations
  • 2.8. Summary
  • References
  • Chapter 3: Time-Domain Models
  • 3.1. Introduction and Fundamental Principles
  • 3.2. The Cummins Equation for Modelling WECs
  • 3.3. Wave Excitation Forces
  • 3.3.1. Wave Loads in Time-Domain Models
  • 3.3.2. Excitation Forces as Superposition of Harmonic Components
  • 3.3.3. Convolution of the Excitation Force
  • 3.3.4. Nonlinear Wave Forces
  • 3.4. The RIRF
  • 3.4.1. Properties of the RIRF.
  • 3.4.2. Numerical Computation of the RIRF
  • 3.5. Convolution of the Radiation Forces
  • 3.5.1. Direct Numerical Integration
  • 3.5.2. Prony Identification Method
  • 3.5.3. Time-Domain Identification
  • 3.5.4. Frequency-Domain Identification
  • 3.6. Hydrostatic Forces
  • 3.7. Solution of the Cummins Equation
  • 3.8. Case-Study: A Single-Body Heaving WEC
  • 3.8.1. System Description
  • 3.8.1.1. Linear PTO
  • 3.8.1.2. Hydraulic PTO
  • 3.8.2. Design and Verification of Time-Domain Models
  • 3.9. The Influence of Simulation Duration
  • 3.10. Limitations
  • 3.11. Summary
  • References
  • Chapter 4: Spectral-Domain Models
  • 4.1. Introduction and Fundamental Principles
  • 4.2. Formulation of the Spectral-Domain Model
  • 4.3. Solving a Spectral-Domain Model
  • 4.4. Examples of Spectral-Domain Modelling
  • 4.5. Further Developments
  • 4.6. Limitations
  • 4.7. Summary
  • References
  • Part II: Other Wave Energy Converter Modelling Techniques
  • Chapter 5: Nonlinear Potential Flow Models
  • 5.1. Introduction and Fundamental Principles
  • 5.1.1. Beyond Linear Theory
  • 5.1.2. Fundamental Principles
  • 5.1.3. Applications of FNPF Models in Wave Energy
  • 5.2. Formulation of the Fully Nonlinear Potential Flow Model
  • 5.3. Solution Methods For Fully Nonlinear Potential Flow Problems
  • 5.3.1. Mixed Eulerian-Lagrangian Method
  • 5.3.2. High-Order Spectral Methods
  • 5.3.3. Computation of Hydrodynamic Body Forces and Motions
  • 5.4. Calculating the WEC Response
  • 5.4.1. WEC Response Subject to Linear PTO Forces
  • 5.5. Limitations
  • 5.6. Summary
  • References
  • Chapter 6: Computational Fluid Dynamics (CFD) Models
  • 6.1. Introduction and Fundamental Principles
  • 6.2. Incompressible CFD Models
  • 6.3. Compressible Two-Phase CFD Models
  • 6.4. Smoothed-Particle Hydrodynamic Models
  • 6.5. Limitations
  • 6.6. Future Developments
  • 6.7. Summary
  • References.
  • Chapter 7: Identifying Models Using Recorded Data
  • 7.1. Introduction and Fundamental Principles
  • 7.2. Data Generation
  • 7.2.1. Identification Experiments
  • 7.2.1.1. Free Decay
  • 7.2.1.2. Input Waves
  • 7.2.1.3. Input Force
  • 7.2.1.4. Prescribed Motion
  • 7.3. Models for System Identification
  • 7.3.1. Continuous-Time Models
  • 7.3.2. Discrete-Time Models
  • 7.3.2.1. Autoregressive With Exogenous Input Model (Linear)
  • 7.3.2.2. Kolmogorov-Gabor Polynomial Model (Nonlinear)
  • 7.3.2.3. Artificial Neural Network Model (Nonlinear)
  • 7.3.2.4. Nonlinear Static Model (Nonlinear)
  • 7.3.2.5. Block-Oriented Nonlinear Model (Nonlinear)
  • 7.4. Identification Algorithms
  • 7.4.1. System Identification
  • 7.4.2. Linear Optimization
  • 7.4.2.1. Time Delay and Dynamical Order Estimation (nd, na, nb)
  • 7.4.2.2. Model Parameters Identification
  • 7.4.3. Nonlinear Optimization
  • 7.5. Case Studies
  • 7.5.1. Case Study 1: Continuous-Time Models Identified From Free Responses
  • 7.5.2. Case Study 2: Discrete-Time Models From Forced Oscillation
  • 7.5.3. Case Study 3: Discrete-Time Models From Input Waves
  • 7.6. Limitations
  • 7.7. Summary
  • References
  • Part III: Wave Energy Converter Array Modelling Techniques
  • Chapter 8: Conventional Multiple Degree-of-Freedom Array Models
  • 8.1. Introduction and Fundamental Principles
  • 8.2. Modelling Based on Linear Potential Flow
  • 8.2.1. Frequency-Domain and Spectral-Domain Modelling
  • 8.2.2. Time-Domain Modelling
  • 8.3. Modelling Based on Other Techniques
  • 8.4. Limitations
  • 8.5. Summary
  • References
  • Chapter 9: Semi-analytical Array Models
  • 9.1. Introduction
  • 9.2. General Formulation
  • 9.2.1. Mathematical Model
  • 9.2.2. Partial Wave Representation of Velocity Potentials
  • 9.2.2.1. Governing Equations
  • 9.2.2.2. Ambient Incident Wave Potential
  • 9.2.2.3. Scattered Potential.
  • 9.2.2.4. Radiation Potential
  • 9.2.3. Partial Wave Operators
  • 9.2.3.1. Coordinate Transformation Operator
  • 9.2.3.2. Diffraction Transfer Operator
  • 9.3. Point Absorber Method
  • 9.3.1. Background
  • 9.3.2. Formulation
  • 9.4. Plane Wave Method
  • 9.4.1. Background
  • 9.4.2. Formulation
  • 9.5. Multiple Scattering Method
  • 9.5.1. Background
  • 9.5.2. Formulation
  • 9.6. Direct Matrix Method
  • 9.6.1. Background
  • 9.6.2. Formulation
  • 9.7. Capabilities and Limitations
  • 9.7.1. Comparison Between Semi-analytical Methods
  • 9.7.2. Comparison With Other Methods
  • 9.7.3. Verification and Validation
  • 9.8. Summary
  • References
  • Chapter 10: Phase-Resolving Wave Propagation Array Models
  • 10.1. Introduction
  • 10.2. Implementation of the WEC Simulation in the Wave Propagation Model MILDwave
  • 10.2.1. General Formulation of MILDwave
  • 10.2.2. Wave Generation on a Circle (for Radiated Waves)
  • 10.2.3. Implementation of the Sponge Layer Technique
  • 10.2.3.1. Influence of the Absorption Coefficient on the Absorption Characteristics
  • 10.2.3.2. Influence of Length on the Absorption Characteristics
  • 10.2.3.3. Frequency Dependent Absorption
  • 10.2.4. Implementation of the Numerical Coupling Methodology
  • 10.2.4.1. Introduction
  • 10.2.4.2. The Generic Coupling Methodology for a Single WEC or for a WEC Farm Modelled as a Whole
  • 10.2.4.3. The Generic Coupling Methodology for a WEC Farm of Individually Modelled WECs of Type (b)
  • 10.3. Applications of the Numerical Techniques Using MILDwave
  • 10.3.1. Wake Effects by a Single WEC of Type (a)
  • 10.3.2. Wake Effects by a Farm of Type (a) WECs
  • 10.3.3. Wake Effects by a Single Type (b) WEC
  • 10.3.3.1. The Modelled WEC
  • 10.3.3.2. Wave Conditions and Numerical Domains.
  • 10.3.3.3. Modelling and Verification of the Radiated, Diffracted, and Perturbed Wave Fields Using the Coupling Methodology
  • 10.4. Limitations
  • 10.5. Summary
  • References
  • Chapter 11: Phase-Averaging Wave Propagation Array Models
  • 11.1. Introduction and Fundamental Principles
  • 11.2. Supragrid Models of WEC Arrays
  • 11.3. Subgrid Models of WEC Arrays
  • 11.4. Limitations
  • 11.5. Summary
  • References
  • Part IV: Applications for Wave Energy Converter Models
  • Chapter 12: Control Optimisation and Parametric Design
  • 12.1. Introduction
  • 12.2. Control of WECs
  • 12.2.1. Control Effectors
  • 12.2.2. Fundamental Control Results
  • 12.2.3. Real-Time Model-Based WEC Control
  • 12.2.3.1. A Simple but Effective WEC Controller
  • 12.2.3.2. The 'Aalborg' PID Controller
  • 12.2.3.3. WEC Controllers Based on Numerical Optimization
  • 12.2.4. Control of WEC Arrays
  • 12.2.5. Wave Forecasting
  • 12.2.6. WEC Control Perspectives
  • 12.3. Optimization of WECs and WEC Arrays
  • 12.3.1. Geometric Optimization of WECs
  • 12.3.2. WEC Array Layout Optimization
  • 12.3.3. Summary
  • References
  • Chapter 13: Determining Mean Annual Energy Production
  • 13.1. Introduction and Appropriate Modelling Techniques
  • 13.2. Representation of the Wave Climate
  • 13.2.1. Traditional (Scatter Table) Representation
  • 13.2.2. Extensive Representation
  • 13.2.3. Abridged Representation
  • 13.3. Representation of Power Performance
  • 13.4. Estimation of the MAEP
  • 13.4.1. Power Matrix-Scatter Table
  • 13.4.2. Power Matrix-Extensive/Abridged Wave Climate
  • 13.4.3. Extensive/Abridged Power Performance-Extensive/Abridged Wave Climate
  • 13.4.4. Abridged Power Performance-Extensive Wave Climate
  • 13.5. Limitations and Constraints
  • 13.6. Summary
  • References
  • Chapter 14: Determining Structural and Hydrodynamic Loads
  • 14.1. Introduction
  • 14.2. Design Principles.
  • 14.2.1. General.