Wills' mineral processing technology an introduction to the practical aspects of ore treatment and mineral recovery
Wills' Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery has been the definitive reference for the mineral processing industry for over thirty years. This industry standard reference provides practicing engineers and students of minera...
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Amsterdam, [Netherlands] :
Butterworth-Heinemann
2016.
|
Edición: | Eighth edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009631453706719 |
Tabla de Contenidos:
- Front Cover
- Wills' Mineral Processing Technology
- Copyright Page
- Contents
- Preface
- Acknowledgments
- 1 Introduction
- 1.1 Minerals
- 1.2 Abundance of Minerals
- 1.3 Deposits And Ores
- 1.4 Metallic and Nonmetallic Ores
- 1.5 The Need for Mineral Processing
- 1.6 Liberation
- 1.7 Concentration
- 1.8 Representing Mineral Processing Systems: The Flowsheet
- 1.9 Measures of Separation
- 1.9.1 Grade
- 1.9.2 Recovery
- 1.9.3 Grade-Recovery Relationship
- 1.9.4 A Measure of Technical Separation Efficiency
- 1.10 Economic Considerations
- 1.10.1 Contained Value
- 1.10.2 Processing Costs
- 1.10.3 Milling Costs
- 1.10.4 Tailings Reprocessing and Recycling
- 1.10.5 Net Smelter Return and Economic Efficiency
- 1.10.6 Case Study: Economics of Tin Processing
- 1.10.7 Case Study: Economics of Copper Processing
- 1.10.8 Economic Efficiency
- 1.11 Sustainability
- References
- 2 Ore Handling
- 2.1 Introduction
- 2.2 The Removal of Harmful Materials
- 2.3 Ore Transportation
- 2.4 Ore Storage
- 2.5 Feeding
- 2.6 Self-Heating of Sulfide Minerals
- References
- 3 Sampling, Control, and Mass Balancing
- 3.1 Introduction
- 3.2 Sampling
- 3.2.1 Sampling Basics: What the Metallurgist Needs to Know
- Composition Variance
- Distribution Variance
- Preparation Variance and Analysis Variance
- 3.2.2 Gy's Equation and Its Use to Estimate the Minimum Sample Size
- 3.2.3 Sampling Surveys
- Rules of Thumb
- 3.2.4 Sampling Equipment
- Probabilistic Samplers
- Non-Probabilistic Samplers
- 3.3 On-line Analysis
- 3.3.1 On-line Element Analysis
- On-stream Analysis
- On-belt Analysis
- 3.3.2 On-stream Mineral Phase Analysis
- 3.3.3 On-stream Ash Analysis
- 3.3.4 On-line Particle Size Analysis
- 3.3.5 Weighing the Ore
- 3.3.6 Mass Flowrate
- Magnetic Flowmeter
- Ultrasonic Flowmeters
- Array-based Flowmeters.
- Slurry Density
- 3.4 Slurry Streams: Some Typical Calculations
- Volumetric Flowrate
- Slurry Density and % Solids
- 3.5 Automatic Control in Mineral Processing
- 3.5.1 Hierarchical Multilayer Control System
- 3.5.2 Instrumentation Layer
- 3.5.3 Regulatory Control Layer
- 3.5.4 Advanced Process Control Layer
- Expert Systems
- 3.5.5 Optimization Layer
- 3.5.6 The Control Room
- 3.6 Mass Balancing Methods
- 3.6.1 The n-product Formula
- Sensitivity Analysis
- Error Propagation
- Excess of Data
- More than One Process Unit
- No Correction of Measurement Errors
- 3.6.2 Node Imbalance Minimization
- Limitations
- 3.6.3 Two-step Least Squares Minimization
- Limitations
- 3.6.4 Generalized Least Squares Minimization
- 3.6.5 Mass Balance Models
- 3.6.6 Error Models
- 3.6.7 Sensitivity Analysis
- 3.6.8 Estimability and Redundancy Analysis
- 3.6.9 Mass Balancing Computer Programs
- 3.6.10 Metallurgical Balance Statement
- 3.7 Example Mass Balance Calculations
- 3.7.1 Use of Particle Size
- 3.7.2 Use of Percent Solids
- 3.7.3 Illustration of Sensitivity of Recovery Calculation
- References
- 4 Particle Size Analysis
- 4.1 Introduction
- 4.2 Particle Size and Shape
- 4.3 Sieve Analysis
- 4.3.1 Test Sieves
- 4.3.2 Choice of Sieve Sizes
- 4.3.3 Testing Methods
- 4.3.4 Presentation of Results
- 4.4 Sub-sieve Techniques
- 4.4.1 Stokes' Equivalent Diameter
- 4.4.2 Sedimentation Methods
- 4.4.3 Elutriation Techniques
- 4.4.4 Microscopic Sizing and Image Analysis
- 4.4.5 Electrical Impedance Method
- 4.4.6 Laser Diffraction Instruments
- 4.5 On-line Particle Size Analysis
- 4.5.1 Slurry Systems
- 4.5.2 On-belt Systems
- References
- 5 Comminution
- 5.1 Introduction
- 5.2 Principles of Comminution
- 5.3 Comminution Modeling
- 5.3.1 Energy-based Comminution Models
- 5.3.2 Breakage Characterization
- Bond Tests.
- Drop Weight Tests
- MacPherson Test
- SPI and SGI Tests
- SAGDesign Test
- Bond-based AG/SAG Models
- 5.3.3 Population Balance Models
- Linking to Energy
- Simplified Grinding Model
- 5.3.4 Fundamental Models
- 5.4 Comminution Efficiency
- Possible Standards
- Operating Work Index WiO
- Functional Performance Analysis
- References
- 6 Crushers
- 6.1 Introduction
- 6.2 Primary Crushers
- 6.2.1 Jaw Crushers
- Jaw-crusher Construction
- 6.2.2 Gyratory Crushers
- Gyratory Crusher Construction
- 6.2.3 Crusher Capacity
- 6.2.4 Selection of a Jaw or Gyratory Crusher
- 6.3 Secondary/tertiary Crushers
- 6.3.1 Cone Crushers
- Wet Crushing
- Wear
- 6.3.2 The Gyradisc® Crusher
- 6.3.3 The Rhodax® Crusher
- 6.3.4 A Development in Fine Crushing
- 6.3.5 Roll Crushers
- 6.4 High Pressure Grinding Rolls
- 6.5 Impact Crushers
- 6.5.1 Hammer Mills
- 6.5.2 Impact Mills
- 6.5.3 Vertical Shaft Impact (VSI) Crushers
- Barmac Vertical Shaft Impact Crusher
- Canica Vertical Shaft Impact Crusher
- 6.6 Rotary Breakers
- 6.7 Crushing Circuits and Control
- References
- 7 Grinding Mills
- 7.1 Introduction
- 7.2 Tumbling Mills
- 7.2.1 Motion of the Charge
- 7.2.2 Power Draw
- 7.2.3 Construction of Mills
- Shell
- Mill Ends
- Trunnions and Bearings
- Drive
- Liners
- Mill Feeders
- 7.2.4 Types of Tumbling Mill
- Rod Mills
- Ball Mills
- Autogenous/Semi-autogenous Mills
- 7.2.5 Motor Selection for Tumbling Mills
- Gearless
- Synchronous
- Wound-rotor Induction
- 7.2.6 Sizing Tumbling Mills
- Rod and Ball Mills
- AG/SAG Mills
- 7.3 Stirred Mills
- 7.3.1 Power Draw and Stress Intensity
- Power Draw
- Stress Intensity
- 7.3.2 Sizing Stirred Mills
- Levin Test
- Metso Jar Ball Mill Test
- Signature Plot Technique
- 7.3.3 Mill Types
- TowerMill®/Vertimill®
- Stirred Media Detritor (SMD®)
- IsaMill®
- VXPMill®.
- HIGMill®
- 7.3.4 Some Operational Points
- Media
- Media Loading
- Slurry Percent Solids
- 7.4 Other Grinding Mill Types
- Vibratory Mills
- Centrifugal Mills
- Roller Mills
- Table and Roller Mills
- Pendulum Roller Mills
- 7.5 Grinding Circuits
- 7.5.1 Circuit Types
- 7.5.2 Circuit Operation
- 7.5.3 Control of the Grinding Circuit
- Instrumentation
- Control Objectives/strategies
- References
- 8 Industrial Screening
- 8.1 Introduction
- 8.2 Screen Performance
- Efficiency Formulae
- Efficiency and Circulating Load
- Efficiency or Partition Curve
- Separation Efficiency
- 8.3 Factors Affecting Screen Performance
- Particle Size
- Feed Rate
- Screen Angle
- Particle Shape
- Open Area
- Vibration
- Moisture
- 8.4 Mathematical Models of Screens
- Phenomenological Models
- Empirical Models
- Numerical Models
- 8.5 Screen Types
- 8.5.1 Vibrating Screens
- Inclined or Circular Motion Screens
- Grizzly Screens
- Horizontal, Low-Head, or Linear Vibrating Screens
- Resonance Screens
- Dewatering Screens
- Banana or Multislope Screens
- Modular Screens
- Mogensen Sizer
- High-Frequency Screens
- Derrick Stack Sizer®
- 8.5.2 Vibration Modes
- Circular Motion (Single-Shaft) Screens
- Linear-Vibration (Double-Shaft) Screens
- Oval Motion (Triple-Shaft) Screens
- 8.5.3 Other Screen Types
- Static Grizzlies
- Mogensen Divergators
- Trommels
- Rotaspiral
- Bradford Breaker
- Roller Screens
- Flip-Flow Screen
- Circular, Gyratory, or Tumbler Screens
- Sieve Bends
- Linear Screen
- Pansep Screen
- 8.5.4 Screening Surfaces
- Bolt-In Screening Surfaces
- Tensioned Screening Surfaces
- Woven-Wire Cloth
- "Self-Cleaning" Wire
- Tensioned Rubber and Polyurethane Mats
- Modular Wire and Wedge Wire Panels
- References
- 9 Classification
- 9.1 Introduction
- 9.2 Principles of Classification.
- 9.2.1 Force Balance
- 9.2.2 Free Settling
- 9.2.3 Hindered Settling
- 9.2.4 Effect of Density on Separation Efficiency
- 9.2.5 Effect of Classifier Operation on Grinding Circuit Behavior
- 9.3 Types of Classifiers
- 9.4 Centrifugal Classifiers-The Hydrocyclone
- 9.4.1 Basic Design and Operation
- 9.4.2 Characterization of Cyclone Efficiency
- The Partition Curve
- Sharpness of Cut
- Multidensity Feeds
- Unusual Partition Curves
- Cyclone Overflow Size Distribution
- 9.4.3 Hydrocyclones Versus Screens
- 9.4.4 Mathematical Models of Hydrocyclone Performance
- Bradley model
- Empirical Models
- Computational Models
- 9.4.5 Operating and Geometric Factors Affecting Cyclone Performance
- 9.4.6 Sizing and Scale-Up of Hydrocyclones
- Scale-Up of Hydrocyclones
- Sizing of Hydrocyclones-Arterburn Technique
- Sizing of Hydrocyclones-Mular-Jull Model
- Sizing of Hydrocyclones-Simulation Packages
- 9.5 Gravitational Classifiers
- 9.5.1 Sedimentation Classifiers
- Nonmechanical Sedimentation Classifiers
- Mechanical Sedimentation Classifiers
- 9.5.2 Hydraulic Classifiers
- References
- 10 Gravity Concentration
- 10.1 Introduction
- 10.2 Principles of Gravity Concentration
- 10.3 Gravitational Concentrators
- 10.3.1 Jigs
- Jigging Action
- Types of Jig
- 10.3.2 Spirals
- 10.3.3 Shaking Tables
- Duplex Concentrator
- Mozley Laboratory Separator
- 10.4 Centrifugal Concentrators
- Kelsey Centrifugal Jig
- Knelson Concentrator
- Falcon Concentrator
- Multi-Gravity Separator
- Testing for Gravity Recoverable Gold
- 10.5 Sluices and Cones
- Sluices
- Reichert Cone
- 10.6 Fluidized Bed Separators
- CrossFlow™ Separator
- Reflux Classifier™
- 10.7 Dry Processing
- Pneumatic Tables
- Air Jigs
- Other Pneumatic-Based Devices
- 10.8 Single-Stage Units and Circuits
- Single Versus Two Stages of Spirals.
- Parallel Circuits.