Machine Learning with TensorFlow

Updated with new code, new projects, and new chapters, Machine Learning with TensorFlow, Second Edition gives readers a solid foundation in machine-learning concepts and the TensorFlow library. Summary Updated with new code, new projects, and new chapters, Machine Learning with TensorFlow, Second Ed...

Descripción completa

Detalles Bibliográficos
Otros Autores: Mattmann, Chris A., author (author), Penberthy, Scott, writer of foreword (writer of foreword)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Shelter Island, New York : Manning [2020]
Edición:Second edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009631303506719
Tabla de Contenidos:
  • Part 1. Your machine-learning rig. 1. A machine-learning odyssey
  • 2. TensorFlow essentials
  • Part 2. Core learning algorithms. 3. Linear regression and beyond
  • 4. Using regression for call-center volume prediction
  • 5. A gentle introduction to classification
  • 6. Sentiment classification : large movie-review dataset
  • 7. Automatically clustering data
  • 8. Inferring user activity from Android accelerometer data
  • 9. Hidden Markov models
  • 10. Part-of-speech tagging and word-sense disambiguation
  • Part 3. The neural network paradigm. 11. A peek into autoencoders
  • 12. Applying autoencoders: the CIFAR-10 image dataset
  • 13. Reinforcement learning
  • 14. Convolutional neural networks
  • 15. Building a real-world CNN: VGG-Face and VGG-Face Lite
  • 16. Recurrent neural networks
  • 17. LSTMs and automatic speech recognition
  • 18. Sequence=to-sequence models for chatbots
  • 19. Utility landscape.