Semantic modeling for data avoiding pitfalls and breaking dilemmas

"What value does semantic data modeling offer? As an information architect or data science professional, let's say you have an abundance of the right data and the technology to extract business gold-- but you still fail. The reason? Bad data semantics. In this practical and comprehensive f...

Descripción completa

Detalles Bibliográficos
Otros Autores: Alexopoulos, Panos, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media 2020.
Edición:First edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009631134506719
Tabla de Contenidos:
  • Part 1. The basics. Mind the semantic gap
  • Semantic modeling elements
  • Semantic and linguistic phenomena
  • Semantic model quality
  • Semantic model development
  • Part 2. The pitfalls. Bad descriptions
  • Bad semantics
  • Bad model specification and knowledge acquisition
  • Bad quality management
  • Bad application
  • Bad strategy and organization
  • Part 3. The dilemmas. Representation dilemmas
  • Expressiveness and content dilemmas
  • Evolution and governance dilemmas
  • Looking ahead.