Image processing and acquisition using Python
"Image Processing and Acquisition using Python, Second Edition provides readers with a sound foundation in both image acquisition and image processing-one of the first books to integrate these topics. By improving readers' knowledge of image acquisition techniques and corresponding image p...
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Boca Raton :
Chapman & Hall/CRC Press
2020.
|
Edición: | Second edition |
Colección: | Chapman & Hall/CRC the Python series
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630919906719 |
Tabla de Contenidos:
- Cover
- Half Title
- Series Page
- Title Page
- Copyright Page
- Dedication
- Contents
- Foreword
- Preface
- Preface to the First Edition
- Introduction
- Authors
- List of Symbols and Abbreviations
- Part I: Introduction to Images and Computing using Python
- 1. Introduction to Python
- 1.1 Introduction
- 1.2 What Is Python?
- 1.3 Python Environments
- 1.3.1 Python Interpreter
- 1.3.2 Anaconda Python Distribution
- 1.4 Running a Python Program
- 1.5 Basic Python Statements and Data Types
- 1.5.1 Data Structures
- 1.5.2 File Handling
- 1.5.3 User-Defined Functions
- 1.6 Summary
- 1.7 Exercises
- 2. Computing using Python Modules
- 2.1 Introduction
- 2.2 Python Modules
- 2.2.1 Creating Modules
- 2.2.2 Loading Modules
- 2.3 Numpy
- 2.3.1 Numpy Array or Matrices?
- 2.4 Scipy
- 2.5 Matplotlib
- 2.6 Python Imaging Library
- 2.7 Scikits
- 2.8 Python OpenCV Module
- 2.9 Summary
- 2.10 Exercises
- 3. Image and Its Properties
- 3.1 Introduction
- 3.2 Image and Its Properties
- 3.2.1 Bit-Depth
- 3.2.2 Pixel and Voxel
- 3.2.3 Image Histogram
- 3.2.4 Window and Level
- 3.2.5 Connectivity: 4 or 8 Pixels
- 3.3 Image Types
- 3.3.1 JPEG
- 3.3.2 TIFF
- 3.3.3 DICOM
- 3.4 Data Structures for Image Analysis
- 3.5 Reading, Writing and Displaying Images
- 3.5.1 Reading Images
- 3.5.2 Reading DICOM Images using pyDICOM
- 3.5.3 Writing Images
- 3.5.4 Writing DICOM Images using pyDICOM
- 3.5.5 Displaying Images
- 3.6 Programming Paradigm
- 3.7 Summary
- 3.8 Exercises
- Part II: Image Processing using Python
- 4. Spatial Filters
- 4.1 Introduction
- 4.2 Filtering
- 4.2.1 Mean Filter
- 4.2.2 Median Filter
- 4.2.3 Max Filter
- 4.2.4 Min Filter
- 4.3 Edge Detection using Derivatives
- 4.3.1 First Derivative Filters
- 4.3.1.1 Sobel Filter
- 4.3.1.2 Prewitt Filter
- 4.3.1.3 Canny Filter.
- 4.3.2 Second Derivative Filters
- 4.3.2.1 Laplacian Filter
- 4.3.2.2 Laplacian of Gaussian Filter
- 4.4 Shape Detecting Filter
- 4.4.1 Frangi Filter
- 4.5 Summary
- 4.6 Exercises
- 5. Image Enhancement
- 5.1 Introduction
- 5.2 Pixel Transformation
- 5.3 Image Inverse
- 5.4 Power Law Transformation
- 5.5 Log Transformation
- 5.6 Histogram Equalization
- 5.7 Contrast Limited Adaptive Histogram Equalization (CLAHE)
- 5.8 Contrast Stretching
- 5.9 Sigmoid Correction
- 5.10 Local Contrast Normalization
- 5.11 Summary
- 5.12 Exercises
- 6. Affine Transformation
- 6.1 Introduction
- 6.2 Affine Transformation
- 6.2.1 Translation
- 6.2.2 Rotation
- 6.2.3 Scaling
- 6.2.4 Interpolation
- 6.3 Summary
- 6.4 Exercises
- 7. Fourier Transform
- 7.1 Introduction
- 7.2 Definition of Fourier Transform
- 7.3 Two-Dimensional Fourier Transform
- 7.3.1 Fast Fourier Transform using Python
- 7.4 Convolution
- 7.4.1 Convolution in Fourier Space
- 7.5 Filtering in the Frequency Domain
- 7.5.1 Ideal Lowpass Filter
- 7.5.2 Butterworth Lowpass Filter
- 7.5.3 Gaussian Lowpass Filter
- 7.5.4 Ideal Highpass Filter
- 7.5.5 Butterworth Highpass Filter
- 7.5.6 Gaussian Highpass Filter
- 7.5.7 Bandpass Filter
- 7.6 Summary
- 7.7 Exercises
- 8. Segmentation
- 8.1 Introduction
- 8.2 Histogram-Based Segmentation
- 8.2.1 Otsu's Method
- 8.2.2 Renyi Entropy
- 8.2.3 Adaptive Thresholding
- 8.3 Region-Based Segmentation
- 8.3.1 Watershed Segmentation
- 8.4 Contour-Based Segmentation
- 8.4.1 Chan-Vese Segmentation
- 8.5 Segmentation Algorithm for Various Modalities
- 8.5.1 Segmentation of Computed Tomography Image
- 8.5.2 Segmentation of MRI Image
- 8.5.3 Segmentation of Optical and Electron Microscope Images
- 8.6 Summary
- 8.7 Exercises
- 9. Morphological Operations
- 9.1 Introduction
- 9.2 History
- 9.3 Dilation
- 9.4 Erosion.
- 9.5 Grayscale Dilation and Erosion
- 9.6 Opening and Closing
- 9.7 Grayscale Opening and Closing
- 9.8 Hit-or-Miss
- 9.9 Thickening and Thinning
- 9.9.1 Skeletonization
- 9.10 Summary
- 9.11 Exercises
- 10. Image Measurements
- 10.1 Introduction
- 10.2 Labeling
- 10.3 Hough Transform
- 10.3.1 Hough Line
- 10.3.2 Hough Circle
- 10.4 Template Matching
- 10.5 Corner Detector
- 10.5.1 FAST Corner Detector
- 10.5.2 Harris Corner Detector
- 10.6 Summary
- 10.7 Exercises
- 11. Neural Network
- 11.1 Introduction
- 11.2 Introduction
- 11.3 Mathematical Modeling
- 11.3.1 Forward Propagation
- 11.3.2 Back-Propagation
- 11.4 Graphical Representation
- 11.5 Neural Network for Classification Problems
- 11.6 Neural Network Example Code
- 11.7 Summary
- 11.8 Exercises
- 12. Convolutional Neural Network
- 12.1 Introduction
- 12.2 Convolution
- 12.3 Maxpooling
- 12.4 LeNet Architecture
- 12.5 Summary
- 12.6 Exercises
- Part III: Image Acquisition
- 13. X-Ray and Computed Tomography
- 13.1 Introduction
- 13.2 History
- 13.3 X-Ray Generation
- 13.3.1 X-Ray Tube Construction
- 13.3.2 X-Ray Generation Process
- 13.4 Material Properties
- 13.4.1 Attenuation
- 13.4.2 Lambert-Beer Law for Multiple Materials
- 13.4.3 Factors Determining Attenuation
- 13.5 X-Ray Detection
- 13.5.1 Image Intensifier
- 13.5.2 Multiple-Field II
- 13.5.3 Flat Panel Detector (FPD)
- 13.6 X-Ray Imaging Modes
- 13.6.1 Fluoroscopy
- 13.6.2 Angiography
- 13.7 Computed Tomography (CT)
- 13.7.1 Reconstruction
- 13.7.2 Parallel-Beam CT
- 13.7.3 Central Slice Theorem
- 13.7.4 Fan-Beam CT
- 13.7.5 Cone-Beam CT
- 13.7.6 Micro-CT
- 13.8 Hounsfield Unit (HU)
- 13.9 Artifacts
- 13.9.1 Geometric Misalignment Artifacts
- 13.9.2 Scatter
- 13.9.3 Offset and Gain Correction
- 13.9.4 Beam Hardening
- 13.9.5 Metal Artifacts
- 13.10 Summary.
- 13.11 Exercises
- 14. Magnetic Resonance Imaging
- 14.1 Introduction
- 14.2 Laws Governing NMR and MRI
- 14.2.1 Faraday's Law
- 14.2.2 Larmor Frequency
- 14.2.3 Bloch Equation
- 14.3 Material Properties
- 14.3.1 Gyromagnetic Ratio
- 14.3.2 Proton Density
- 14.3.3 T1 and T2 Relaxation Times
- 14.4 NMR Signal Detection
- 14.5 MRI Signal Detection or MRI Imaging
- 14.5.1 Slice Selection
- 14.5.2 Phase Encoding
- 14.5.3 Frequency Encoding
- 14.6 MRI Construction
- 14.6.1 Main Magnet
- 14.6.2 Gradient Magnet
- 14.6.3 RF Coils
- 14.6.4 K-Space Imaging
- 14.7 T1, T2 and Proton Density Image
- 14.8 MRI Modes or Pulse Sequence
- 14.8.1 Spin Echo Imaging
- 14.8.2 Inversion Recovery
- 14.8.3 Gradient Echo Imaging
- 14.9 MRI Artifacts
- 14.9.1 Motion Artifact
- 14.9.2 Metal Artifact
- 14.9.3 Inhomogeneity Artifact
- 14.9.4 Partial Volume Artifact
- 14.10 Summary
- 14.11 Exercises
- 15. Light Microscopes
- 15.1 Introduction
- 15.2 Physical Principles
- 15.2.1 Geometric Optics
- 15.2.2 Numerical Aperture
- 15.2.3 Diffraction Limit
- 15.2.4 Objective Lens
- 15.2.5 Point Spread Function (PSF)
- 15.2.6 Wide-Field Microscopes
- 15.3 Construction of a Wide-Field Microscope
- 15.4 Epi-Illumination
- 15.5 Fluorescence Microscope
- 15.5.1 Theory
- 15.5.2 Properties of Fluorochromes
- 15.5.3 Filters
- 15.6 Confocal Microscopes
- 15.7 Nipkow Disk Microscopes
- 15.8 Confocal or Wide-Field?
- 15.9 Summary
- 15.10 Exercises
- 16. Electron Microscopes
- 16.1 Introduction
- 16.2 Physical Principles
- 16.2.1 Electron Beam
- 16.2.2 Interaction of Electron with Matter
- 16.2.3 Interaction of Electrons in TEM
- 16.2.4 Interaction of Electrons in SEM
- 16.3 Construction of EMs
- 16.3.1 Electron Gun
- 16.3.2 Electromagnetic Lens
- 16.3.3 Detectors
- 16.4 Specimen Preparations
- 16.5 Construction of the TEM.
- 16.6 Construction of the SEM
- 16.7 Factors Determining Image Quality
- 16.8 Summary
- 16.9 Exercises
- Appendix A: Process-Based Parallelism using Joblib
- A.1 Introduction to Process-Based Parallelism
- A.2 Introduction to Joblib
- A.3 Parallel Examples
- Appendix B: Parallel Programming using MPI4Py
- B.1 Introduction to MPI
- B.2 Need for MPI in Python Image Processing
- B.3 Introduction to MPI4Py
- B.4 Communicator
- B.5 Communication
- B.5.1 Point-to-Point Communication
- B.5.2 Collective Communication
- B.6 Calculating the Value of PI
- Appendix C: Introduction to ImageJ
- C.1 Introduction
- C.2 ImageJ Primer
- Appendix D: Matlab® and Numpy Functions
- D.1 Introduction
- Bibliography
- Index.