Image processing and acquisition using Python

"Image Processing and Acquisition using Python, Second Edition provides readers with a sound foundation in both image acquisition and image processing-one of the first books to integrate these topics. By improving readers' knowledge of image acquisition techniques and corresponding image p...

Descripción completa

Detalles Bibliográficos
Otros Autores: Chityala, Ravishankar, author (author), Pudipeddi, Sridevi, author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Boca Raton : Chapman & Hall/CRC Press 2020.
Edición:Second edition
Colección:Chapman & Hall/CRC the Python series
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630919906719
Tabla de Contenidos:
  • Cover
  • Half Title
  • Series Page
  • Title Page
  • Copyright Page
  • Dedication
  • Contents
  • Foreword
  • Preface
  • Preface to the First Edition
  • Introduction
  • Authors
  • List of Symbols and Abbreviations
  • Part I: Introduction to Images and Computing using Python
  • 1. Introduction to Python
  • 1.1 Introduction
  • 1.2 What Is Python?
  • 1.3 Python Environments
  • 1.3.1 Python Interpreter
  • 1.3.2 Anaconda Python Distribution
  • 1.4 Running a Python Program
  • 1.5 Basic Python Statements and Data Types
  • 1.5.1 Data Structures
  • 1.5.2 File Handling
  • 1.5.3 User-Defined Functions
  • 1.6 Summary
  • 1.7 Exercises
  • 2. Computing using Python Modules
  • 2.1 Introduction
  • 2.2 Python Modules
  • 2.2.1 Creating Modules
  • 2.2.2 Loading Modules
  • 2.3 Numpy
  • 2.3.1 Numpy Array or Matrices?
  • 2.4 Scipy
  • 2.5 Matplotlib
  • 2.6 Python Imaging Library
  • 2.7 Scikits
  • 2.8 Python OpenCV Module
  • 2.9 Summary
  • 2.10 Exercises
  • 3. Image and Its Properties
  • 3.1 Introduction
  • 3.2 Image and Its Properties
  • 3.2.1 Bit-Depth
  • 3.2.2 Pixel and Voxel
  • 3.2.3 Image Histogram
  • 3.2.4 Window and Level
  • 3.2.5 Connectivity: 4 or 8 Pixels
  • 3.3 Image Types
  • 3.3.1 JPEG
  • 3.3.2 TIFF
  • 3.3.3 DICOM
  • 3.4 Data Structures for Image Analysis
  • 3.5 Reading, Writing and Displaying Images
  • 3.5.1 Reading Images
  • 3.5.2 Reading DICOM Images using pyDICOM
  • 3.5.3 Writing Images
  • 3.5.4 Writing DICOM Images using pyDICOM
  • 3.5.5 Displaying Images
  • 3.6 Programming Paradigm
  • 3.7 Summary
  • 3.8 Exercises
  • Part II: Image Processing using Python
  • 4. Spatial Filters
  • 4.1 Introduction
  • 4.2 Filtering
  • 4.2.1 Mean Filter
  • 4.2.2 Median Filter
  • 4.2.3 Max Filter
  • 4.2.4 Min Filter
  • 4.3 Edge Detection using Derivatives
  • 4.3.1 First Derivative Filters
  • 4.3.1.1 Sobel Filter
  • 4.3.1.2 Prewitt Filter
  • 4.3.1.3 Canny Filter.
  • 4.3.2 Second Derivative Filters
  • 4.3.2.1 Laplacian Filter
  • 4.3.2.2 Laplacian of Gaussian Filter
  • 4.4 Shape Detecting Filter
  • 4.4.1 Frangi Filter
  • 4.5 Summary
  • 4.6 Exercises
  • 5. Image Enhancement
  • 5.1 Introduction
  • 5.2 Pixel Transformation
  • 5.3 Image Inverse
  • 5.4 Power Law Transformation
  • 5.5 Log Transformation
  • 5.6 Histogram Equalization
  • 5.7 Contrast Limited Adaptive Histogram Equalization (CLAHE)
  • 5.8 Contrast Stretching
  • 5.9 Sigmoid Correction
  • 5.10 Local Contrast Normalization
  • 5.11 Summary
  • 5.12 Exercises
  • 6. Affine Transformation
  • 6.1 Introduction
  • 6.2 Affine Transformation
  • 6.2.1 Translation
  • 6.2.2 Rotation
  • 6.2.3 Scaling
  • 6.2.4 Interpolation
  • 6.3 Summary
  • 6.4 Exercises
  • 7. Fourier Transform
  • 7.1 Introduction
  • 7.2 Definition of Fourier Transform
  • 7.3 Two-Dimensional Fourier Transform
  • 7.3.1 Fast Fourier Transform using Python
  • 7.4 Convolution
  • 7.4.1 Convolution in Fourier Space
  • 7.5 Filtering in the Frequency Domain
  • 7.5.1 Ideal Lowpass Filter
  • 7.5.2 Butterworth Lowpass Filter
  • 7.5.3 Gaussian Lowpass Filter
  • 7.5.4 Ideal Highpass Filter
  • 7.5.5 Butterworth Highpass Filter
  • 7.5.6 Gaussian Highpass Filter
  • 7.5.7 Bandpass Filter
  • 7.6 Summary
  • 7.7 Exercises
  • 8. Segmentation
  • 8.1 Introduction
  • 8.2 Histogram-Based Segmentation
  • 8.2.1 Otsu's Method
  • 8.2.2 Renyi Entropy
  • 8.2.3 Adaptive Thresholding
  • 8.3 Region-Based Segmentation
  • 8.3.1 Watershed Segmentation
  • 8.4 Contour-Based Segmentation
  • 8.4.1 Chan-Vese Segmentation
  • 8.5 Segmentation Algorithm for Various Modalities
  • 8.5.1 Segmentation of Computed Tomography Image
  • 8.5.2 Segmentation of MRI Image
  • 8.5.3 Segmentation of Optical and Electron Microscope Images
  • 8.6 Summary
  • 8.7 Exercises
  • 9. Morphological Operations
  • 9.1 Introduction
  • 9.2 History
  • 9.3 Dilation
  • 9.4 Erosion.
  • 9.5 Grayscale Dilation and Erosion
  • 9.6 Opening and Closing
  • 9.7 Grayscale Opening and Closing
  • 9.8 Hit-or-Miss
  • 9.9 Thickening and Thinning
  • 9.9.1 Skeletonization
  • 9.10 Summary
  • 9.11 Exercises
  • 10. Image Measurements
  • 10.1 Introduction
  • 10.2 Labeling
  • 10.3 Hough Transform
  • 10.3.1 Hough Line
  • 10.3.2 Hough Circle
  • 10.4 Template Matching
  • 10.5 Corner Detector
  • 10.5.1 FAST Corner Detector
  • 10.5.2 Harris Corner Detector
  • 10.6 Summary
  • 10.7 Exercises
  • 11. Neural Network
  • 11.1 Introduction
  • 11.2 Introduction
  • 11.3 Mathematical Modeling
  • 11.3.1 Forward Propagation
  • 11.3.2 Back-Propagation
  • 11.4 Graphical Representation
  • 11.5 Neural Network for Classification Problems
  • 11.6 Neural Network Example Code
  • 11.7 Summary
  • 11.8 Exercises
  • 12. Convolutional Neural Network
  • 12.1 Introduction
  • 12.2 Convolution
  • 12.3 Maxpooling
  • 12.4 LeNet Architecture
  • 12.5 Summary
  • 12.6 Exercises
  • Part III: Image Acquisition
  • 13. X-Ray and Computed Tomography
  • 13.1 Introduction
  • 13.2 History
  • 13.3 X-Ray Generation
  • 13.3.1 X-Ray Tube Construction
  • 13.3.2 X-Ray Generation Process
  • 13.4 Material Properties
  • 13.4.1 Attenuation
  • 13.4.2 Lambert-Beer Law for Multiple Materials
  • 13.4.3 Factors Determining Attenuation
  • 13.5 X-Ray Detection
  • 13.5.1 Image Intensifier
  • 13.5.2 Multiple-Field II
  • 13.5.3 Flat Panel Detector (FPD)
  • 13.6 X-Ray Imaging Modes
  • 13.6.1 Fluoroscopy
  • 13.6.2 Angiography
  • 13.7 Computed Tomography (CT)
  • 13.7.1 Reconstruction
  • 13.7.2 Parallel-Beam CT
  • 13.7.3 Central Slice Theorem
  • 13.7.4 Fan-Beam CT
  • 13.7.5 Cone-Beam CT
  • 13.7.6 Micro-CT
  • 13.8 Hounsfield Unit (HU)
  • 13.9 Artifacts
  • 13.9.1 Geometric Misalignment Artifacts
  • 13.9.2 Scatter
  • 13.9.3 Offset and Gain Correction
  • 13.9.4 Beam Hardening
  • 13.9.5 Metal Artifacts
  • 13.10 Summary.
  • 13.11 Exercises
  • 14. Magnetic Resonance Imaging
  • 14.1 Introduction
  • 14.2 Laws Governing NMR and MRI
  • 14.2.1 Faraday's Law
  • 14.2.2 Larmor Frequency
  • 14.2.3 Bloch Equation
  • 14.3 Material Properties
  • 14.3.1 Gyromagnetic Ratio
  • 14.3.2 Proton Density
  • 14.3.3 T1 and T2 Relaxation Times
  • 14.4 NMR Signal Detection
  • 14.5 MRI Signal Detection or MRI Imaging
  • 14.5.1 Slice Selection
  • 14.5.2 Phase Encoding
  • 14.5.3 Frequency Encoding
  • 14.6 MRI Construction
  • 14.6.1 Main Magnet
  • 14.6.2 Gradient Magnet
  • 14.6.3 RF Coils
  • 14.6.4 K-Space Imaging
  • 14.7 T1, T2 and Proton Density Image
  • 14.8 MRI Modes or Pulse Sequence
  • 14.8.1 Spin Echo Imaging
  • 14.8.2 Inversion Recovery
  • 14.8.3 Gradient Echo Imaging
  • 14.9 MRI Artifacts
  • 14.9.1 Motion Artifact
  • 14.9.2 Metal Artifact
  • 14.9.3 Inhomogeneity Artifact
  • 14.9.4 Partial Volume Artifact
  • 14.10 Summary
  • 14.11 Exercises
  • 15. Light Microscopes
  • 15.1 Introduction
  • 15.2 Physical Principles
  • 15.2.1 Geometric Optics
  • 15.2.2 Numerical Aperture
  • 15.2.3 Diffraction Limit
  • 15.2.4 Objective Lens
  • 15.2.5 Point Spread Function (PSF)
  • 15.2.6 Wide-Field Microscopes
  • 15.3 Construction of a Wide-Field Microscope
  • 15.4 Epi-Illumination
  • 15.5 Fluorescence Microscope
  • 15.5.1 Theory
  • 15.5.2 Properties of Fluorochromes
  • 15.5.3 Filters
  • 15.6 Confocal Microscopes
  • 15.7 Nipkow Disk Microscopes
  • 15.8 Confocal or Wide-Field?
  • 15.9 Summary
  • 15.10 Exercises
  • 16. Electron Microscopes
  • 16.1 Introduction
  • 16.2 Physical Principles
  • 16.2.1 Electron Beam
  • 16.2.2 Interaction of Electron with Matter
  • 16.2.3 Interaction of Electrons in TEM
  • 16.2.4 Interaction of Electrons in SEM
  • 16.3 Construction of EMs
  • 16.3.1 Electron Gun
  • 16.3.2 Electromagnetic Lens
  • 16.3.3 Detectors
  • 16.4 Specimen Preparations
  • 16.5 Construction of the TEM.
  • 16.6 Construction of the SEM
  • 16.7 Factors Determining Image Quality
  • 16.8 Summary
  • 16.9 Exercises
  • Appendix A: Process-Based Parallelism using Joblib
  • A.1 Introduction to Process-Based Parallelism
  • A.2 Introduction to Joblib
  • A.3 Parallel Examples
  • Appendix B: Parallel Programming using MPI4Py
  • B.1 Introduction to MPI
  • B.2 Need for MPI in Python Image Processing
  • B.3 Introduction to MPI4Py
  • B.4 Communicator
  • B.5 Communication
  • B.5.1 Point-to-Point Communication
  • B.5.2 Collective Communication
  • B.6 Calculating the Value of PI
  • Appendix C: Introduction to ImageJ
  • C.1 Introduction
  • C.2 ImageJ Primer
  • Appendix D: Matlab® and Numpy Functions
  • D.1 Introduction
  • Bibliography
  • Index.