Ensemble Learning for AI Developers Learn Bagging, Stacking, and Boosting Methods with Use Cases
Use ensemble learning techniques and models to improve your machine learning results. Ensemble Learning for AI Developers starts you at the beginning with an historical overview and explains key ensemble techniques and why they are needed. You then will learn how to change training data using baggin...
Autores principales: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Berkeley, CA :
Apress
2020.
|
Edición: | 1st ed. 2020. |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630916906719 |
Tabla de Contenidos:
- Chapter 1: Why Ensemble Techniques Are Needed
- Chapter 2: Mix Training Data
- Chapter 3: Mix Models
- Chapter 4: Mix Combinations
- Chapter 5: Use Ensemble Learning Libraries
- Chapter 6: Tips and Best Practices.-.