Strengthening deep neural networks making AI less susceptible to adversarial trickery

As deep neural networks (DNNs) become increasingly common in real-world applications, the potential to deliberately "fool" them with data that wouldn’t trick a human presents a new attack vector. This practical book examines real-world scenarios where DNNs—the algorithms intrinsic to much...

Descripción completa

Detalles Bibliográficos
Otros Autores: Warr, Katy, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Beijing : O'Reilly [2019]
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630820806719
Tabla de Contenidos:
  • Part 1. An introduction to fooling AI. Introduction
  • Attack motivations
  • Deep neural network (DNN) fundamentals
  • DNN processing for image, audio, and video
  • Part 2. Generating adversarial input. The principles of adversarial input
  • Methods for generating adversarial perturbation
  • Part 3. Understanding the real-world threat. Attack patterns for real-world systems
  • Physical-world attacks
  • Part 4. Defense. Evaluating model robustness to adversarial inputs
  • Defending against adversarial inputs
  • Future trends : toward robust AI
  • Mathematics terminology reference.