TinyML machine learning with Tensorflow Lite on Arduino, and ultra-low power micro-controllers

Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make as...

Descripción completa

Detalles Bibliográficos
Otros Autores: Warden, Pete, author (author), Situnayake, Daniel, author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Beijing : O'Reilly [2020]
Edición:First edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630675906719
Tabla de Contenidos:
  • Introduction
  • Getting started
  • Getting up to speed on machine learning
  • The "Hello world" of TinyML : building and training a model
  • The "Hello world" of TinyML : building an application
  • The "Hello world" of TinyML : deploying to microcontrollers
  • Wake-word detection : building an application
  • Wake-word detection : training a model
  • Person detection : building an application
  • Person detection : training a model
  • Magic wand : building an application
  • Magic wand : training a model
  • TensorFlow lite for microcontrollers
  • Designing your own TinyML applications
  • Optimizing latency
  • Optimizing energy usage
  • Optimizing model and binary size
  • Debugging
  • Porting models from TensorFlow to TensorFlow Lite
  • Privacy, security, and deployment
  • Learning more.