PySpark SQL Recipes With HiveQL, Dataframe and Graphframes

Carry out data analysis with PySpark SQL, graphframes, and graph data processing using a problem-solution approach. This book provides solutions to problems related to dataframes, data manipulation summarization, and exploratory analysis. You will improve your skills in graph data analysis using gra...

Descripción completa

Detalles Bibliográficos
Autores principales: Mishra, Raju Kumar. author (author), Raman, Sundar Rajan. author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Berkeley, CA : Apress 2019.
Edición:1st ed. 2019.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630659606719
Tabla de Contenidos:
  • Chapter 1: Introduction to PySparkSQL
  • Chapter 2: Some time with Installation
  • Chapter 3: IO in PySparkSQL
  • Chapter 4 : Operations on PySparkSQL DataFrames
  • Chapter 5 : Data Merging and Data Aggregation using PySparkSQL
  • Chapter 6: SQL, NoSQL and PySparkSQL
  • Chapter 7: Structured Streaming
  • Chapter 8 : Optimizing PySparkSQL
  • Chapter 9 : GraphFrames.