Assured cloud computing

Explores themes that drive individual contributions, including design correctness, support for big data and analytics, monitoring and detection, network considerations, and performance - Synthesizes highly cited earlier work (on topics including DARE, trust mechanisms, and elastic graphs) as well as...

Descripción completa

Detalles Bibliográficos
Otros Autores: Campbell, Roy, author (author), Campbell, Roy Harold, editor (editor), Kamhoua, Charles A., editor, Kwiat, Kevin A., editor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, New Jersey : IEEE Computer Society, Inc./Wiley 2018.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630638806719
Tabla de Contenidos:
  • Preface xiii
  • Editors’ Biographies xvii
  • List of Contributors xix
  • 1 Introduction 1 /Roy H. Campbell
  • 1.1 Introduction 1
  • 1.1.1 Mission-Critical Cloud Solutions for the Military 2
  • 1.2 Overview of the Book 3
  • 2 Survivability: Design, Formal Modeling, and Validation of Cloud Storage Systems Using Maude 10 /Rakesh Bobba, Jon Grov, Indranil Gupta, Si Liu, José Meseguer,Peter Csaba Ölveczky, and Stephen Skeirik
  • 2.1 Introduction 10
  • 2.1.1 State of the Art 11
  • 2.1.2 Vision: Formal Methods for Cloud Storage Systems 12
  • 2.1.3 The Rewriting Logic Framework 13
  • 2.1.4 Summary: Using Formal Methods on Cloud Storage Systems 15
  • 2.2 Apache Cassandra 17
  • 2.3 Formalizing, Analyzing, and Extending Google’s Megastore 23
  • 2.3.1 Specifying Megastore 23
  • 2.3.2 Analyzing Megastore 25
  • 2.3.2.1 Megastore-CGC 29
  • 2.4 RAMP Transaction Systems 30
  • 2.5 Group Key Management via ZooKeeper 31
  • 2.5.1 ZooKeeper Background 32
  • 2.5.2 System Design 33
  • 2.5.3 Maude Model 34
  • 2.5.4 Analysis and Discussion 35
  • 2.6 How Amazon Web Services Uses Formal Methods 37
  • 2.6.1 Use of Formal Methods 37
  • 2.6.2 Outcomes and Experiences 38
  • 2.6.3 Limitations 39
  • 2.7 Related Work 40
  • 2.8 Concluding Remarks 42
  • 2.8.1 The Future 43
  • 3 Risks and Benefits: Game-Theoretical Analysis and Algorithm for Virtual Machine Security Management in the Cloud 49 /Luke Kwiat, Charles A. Kamhoua, Kevin A. Kwiat, and Jian Tang
  • 3.1 Introduction 49
  • 3.2 Vision: Using Cloud Technology in Missions 51
  • 3.3 State of the Art 54
  • 3.4 System Model 57
  • 3.5 Game Model 59
  • 3.6 Game Analysis 61
  • 3.7 Model Extension and Discussion 67
  • 3.8 Numerical Results and Analysis 71
  • 3.8.1 Changes in User 2’s Payoff with Respect to L2 71
  • 3.8.2 Changes in User 2’s Payoff with Respect to e 72
  • 3.8.3 Changes in User 2’s Payoff with Respect to π 73
  • 3.8.4 Changes in User 2’s Payoff with Respect to qI 74
  • 3.8.5 Model Extension to n = 10 Users 75.
  • 3.9 The Future 78
  • 4 Detection and Security: Achieving Resiliency by Dynamic and Passive System Monitoring and Smart Access Control 81 /Zbigniew Kalbarczyk
  • 4.1 Introduction 82
  • 4.2 Vision: Using Cloud Technology in Missions 83
  • 4.3 State of the Art 84
  • 4.4 Dynamic VM Monitoring Using Hypervisor Probes 85
  • 4.4.1 Design 86
  • 4.4.2 Prototype Implementation 88
  • 4.4.3 Example Detectors 90
  • 4.4.3.1 Emergency Exploit Detector 90
  • 4.4.3.2 Application Heartbeat Detector 91
  • 4.4.4 Performance 93
  • 4.4.4.1 Microbenchmarks 93
  • 4.4.4.2 Detector Performance 94
  • 4.4.5 Summary 95
  • 4.5 Hypervisor Introspection: A Technique for Evading Passive Virtual Machine Monitoring 96
  • 4.5.1 Hypervisor Introspection 97
  • 4.5.1.1 VMI Monitor 97
  • 4.5.1.2 VM Suspend Side-Channel 97
  • 4.5.1.3 Limitations of Hypervisor Introspection 98
  • 4.5.2 Evading VMI with Hypervisor Introspection 98
  • 4.5.2.1 Insider Attack Model and Assumptions 98
  • 4.5.2.2 Large File Transfer 99
  • 4.5.3 Defenses against Hypervisor Introspection 101
  • 4.5.3.1 Introducing Noise to VM Clocks 101
  • 4.5.3.2 Scheduler-Based Defenses 101
  • 4.5.3.3 Randomized Monitoring Interval 102
  • 4.5.4 Summary 103
  • 4.6 Identifying Compromised Users in Shared Computing Infrastructures 103
  • 4.6.1 Target System and Security Data 104
  • 4.6.1.1 Data and Alerts 105
  • 4.6.1.2 Automating the Analysis of Alerts 106
  • 4.6.2 Overview of the Data 107
  • 4.6.3 Approach 109
  • 4.6.3.1 The Model: Bayesian Network 109
  • 4.6.3.2 Training of the Bayesian Network 110
  • 4.6.4 Analysis of the Incidents 112
  • 4.6.4.1 Sample Incident 112
  • 4.6.4.2 Discussion 113
  • 4.6.5 Supporting Decisions with the Bayesian Network Approach 114
  • 4.6.5.1 Analysis of the Incidents 114
  • 4.6.5.2 Analysis of the Borderline Cases 116
  • 4.6.6 Conclusion 118
  • 4.7 Integrating Attribute-Based Policies into Role-Based Access Control 118
  • 4.7.1 Framework Description 119
  • 4.7.2 Aboveground Level: Tables 119
  • 4.7.2.1 Environment 120.
  • 4.7.2.2 User-Role Assignments 120
  • 4.7.2.3 Role-Permission Assignments 121
  • 4.7.3 Underground Level: Policies 121
  • 4.7.3.1 Role-Permission Assignment Policy 122
  • 4.7.3.2 User-Role Assignment Policy 123
  • 4.7.4 Case Study: Large-Scale ICS 123
  • 4.7.4.1 RBAC Model-Building Process 124
  • 4.7.4.2 Discussion of Case Study 127
  • 4.7.5 Concluding Remarks 128
  • 4.8 The Future 128
  • 5 Scalability, Workloads, and Performance: Replication, Popularity, Modeling, and Geo-Distributed File Stores 133 /Roy H. Campbell, Shadi A. Noghabi, and Cristina L. Abad
  • 5.1 Introduction 133
  • 5.2 Vision: Using Cloud Technology in Missions 134
  • 5.3 State of the Art 136
  • 5.4 Data Replication in a Cloud File System 137
  • 5.4.1 MapReduce Clusters 138
  • 5.4.1.1 File Popularity, Temporal Locality, and Arrival Patterns 142
  • 5.4.1.2 Synthetic Workloads for Big Data 144
  • 5.4.2 Related Work 147
  • 5.4.3 Contribution from Our Approach to Generating Big Data Request Streams Using Clustered Renewal Processes 149
  • 5.4.3.1 Scalable Geo-Distributed Storage 149
  • 5.4.4 Related Work 151
  • 5.4.5 Summary of Ambry 152
  • 5.5 Summary 153
  • 5.6 The Future 153
  • 6 Resource Management: Performance Assuredness in Distributed Cloud Computing via Online Reconfigurations 160 /Mainak Ghosh, Le Xu, and Indranil Gupta
  • 6.1 Introduction 161
  • 6.2 Vision: Using Cloud Technology in Missions 163
  • 6.3 State of the Art 164
  • 6.3.1 State of the Art: Reconfigurations in Sharded Databases/Storage 164
  • 6.3.1.1 Database Reconfigurations 164
  • 6.3.1.2 Live Migration 164
  • 6.3.1.3 Network Flow Scheduling 164
  • 6.3.2 State of the Art: Scale-Out/Scale-In in Distributed Stream Processing Systems 165
  • 6.3.2.1 Real-Time Reconfigurations 165
  • 6.3.2.2 Live Migration 165
  • 6.3.2.3 Real-Time Elasticity 165
  • 6.3.3 State of the Art: Scale-Out/Scale-In in Distributed Graph Processing Systems 166
  • 6.3.3.1 Data Centers 166
  • 6.3.3.2 Cloud and Storage Systems 166
  • 6.3.3.3 Data Processing Frameworks 166.
  • 6.3.3.4 Partitioning in Graph Processing 166
  • 6.3.3.5 Dynamic Repartitioning in Graph Processing 167
  • 6.3.4 State of the Art: Priorities and Deadlines in Batch Processing Systems 167
  • 6.3.4.1 OS Mechanisms 167
  • 6.3.4.2 Preemption 167
  • 6.3.4.3 Real-Time Scheduling 168
  • 6.3.4.4 Fairness 168
  • 6.3.4.5 Cluster Management with SLOs 168
  • 6.4 Reconfigurations in NoSQL and Key-Value Storage/Databases 169
  • 6.4.1 Motivation 169
  • 6.4.2 Morphus: Reconfigurations in Sharded Databases/Storage 170
  • 6.4.2.1 Assumptions 170
  • 6.4.2.2 MongoDB System Model 170
  • 6.4.2.3 Reconfiguration Phases in Morphus 171
  • 6.4.2.4 Algorithms for Efficient Shard Key Reconfigurations 172
  • 6.4.2.5 Network Awareness 175
  • 6.4.2.6 Evaluation 175
  • 6.4.3 Parqua: Reconfigurations in Distributed Key-Value Stores 179
  • 6.4.3.1 System Model 180
  • 6.4.3.2 System Design and Implementation 181
  • 6.4.3.3 Experimental Evaluation 183
  • 6.5 Scale-Out and Scale-In Operations 185
  • 6.5.1 Stela: Scale-Out/Scale-In in Distributed Stream Processing Systems 186
  • 6.5.1.1 Motivation 186
  • 6.5.1.2 Data Stream Processing Model and Assumptions 187
  • 6.5.1.3 Stela: Scale-Out Overview 187
  • 6.5.1.4 Effective Throughput Percentage (ETP) 188
  • 6.5.1.5 Iterative Assignment and Intuition 190
  • 6.5.1.6 Stela: Scale-In 191
  • 6.5.1.7 Core Architecture 191
  • 6.5.1.8 Evaluation 193
  • 6.5.1.9 Experimental Setup 193
  • 6.5.1.10 Yahoo! Storm Topologies and Network Monitoring Topology 193
  • 6.5.1.11 Convergence Time 195
  • 6.5.1.12 Scale-In Experiments 196
  • 6.5.2 Scale-Out/Scale-In in Distributed Graph Processing Systems 197
  • 6.5.2.1 Motivation 197
  • 6.5.2.2 What to Migrate, and How? 199
  • 6.5.2.3 When to Migrate? 201
  • 6.5.2.4 Evaluation 203
  • 6.6 Priorities and Deadlines in Batch Processing Systems 204
  • 6.6.1 Natjam: Supporting Priorities and Deadlines in Hadoop 204
  • 6.6.1.1 Motivation 204
  • 6.6.1.2 Eviction Policies for a Dual-Priority Setting 206
  • 6.6.1.3 Natjam Architecture 209.
  • 6.6.1.4 Natjam-R: Deadline-Based Eviction 215
  • 6.6.1.5 Microbenchmarks 216
  • 6.6.1.6 Natjam-R Evaluation 221
  • 6.7 Summary 223
  • 6.8 The Future 224
  • 7 Theoretical Considerations: Inferring and Enforcing Use Patterns for Mobile Cloud Assurance 237 /Gul Agha, Minas Charalambides, Kirill Mechitov, Karl Palmskog,Atul Sandur, and Reza Shiftehfar
  • 7.1 Introduction 237
  • 7.2 Vision 239
  • 7.3 State of the Art 240
  • 7.3.1 Code Offloading 241
  • 7.3.2 Coordination Constraints 241
  • 7.3.3 Session Types 242
  • 7.4 Code Offloading and the IMCM Framework 243
  • 7.4.1 IMCM Framework: Overview 244
  • 7.4.2 Cloud Application and Infrastructure Models 244
  • 7.4.3 Cloud Application Model 245
  • 7.4.4 Defining Privacy for Mobile Hybrid Cloud Applications 247
  • 7.4.5 A Face Recognition Application 247
  • 7.4.6 The Design of an Authorization System 249
  • 7.4.7 Mobile Hybrid Cloud Authorization Language 250
  • 7.4.7.1 Grouping, Selection, and Binding 252
  • 7.4.7.2 Policy Description 252
  • 7.4.7.3 Policy Evaluation 253
  • 7.4.8 Performance- and Energy-Usage-Based Code Offloading 254
  • 7.4.8.1 Offloading for Sequential Execution on a Single Server 254
  • 7.4.8.2 Offloading for Parallel Execution on Hybrid Clouds 255
  • 7.4.8.3 Maximizing Performance 255
  • 7.4.8.4 Minimizing Energy Consumption 256
  • 7.4.8.5 Energy Monitoring 257
  • 7.4.8.6 Security Policies and Energy Monitoring 258
  • 7.5 Coordinating Actors 259
  • 7.5.1 Expressing Coordination 259
  • 7.5.1.1 Synchronizers 260
  • 7.5.1.2 Security Issues in Synchronizers 260
  • 7.6 Session Types 264
  • 7.6.1 Session Types for Actors 265
  • 7.6.1.1 Example: Sliding Window Protocol 265
  • 7.6.2 Global Types 266
  • 7.6.3 Programming Language 268
  • 7.6.4 Local Types and Type Checking 269
  • 7.6.5 Realization of Global Types 270
  • 7.7 The Future 271
  • Acknowledgments 272
  • 8 Certifications Past and Future: A Future Model for Assigning Certifications that Incorporate Lessons Learned from Past Practices 277 /Masooda Bashir, Carlo Di Giulio, and Charles A. Kamhoua.
  • 8.1 Introduction 277
  • 8.1.1 What Is a Standard? 279
  • 8.1.2 Standards and Cloud Computing 281
  • 8.2 Vision: Using Cloud Technology in Missions 283
  • 8.3 State of the Art 284
  • 8.3.1 The Federal Risk Authorization Management Program 286
  • 8.3.2 SOC Reports and TSPC 288
  • 8.3.3 ISO/IEC 27001 291
  • 8.3.4 Main Differences among the Standards 292
  • 8.3.5 Other Existing Frameworks 293
  • 8.3.5.1 PCI-DSS 293
  • 8.3.5.2 C5 294
  • 8.3.5.3 STAR 294
  • 8.3.6 What Protections Do Standards Offer against Vulnerabilities in the Cloud? 294
  • 8.4 Comparison among Standards 296
  • 8.4.1 Strategy for Comparing Standards 298
  • 8.4.2 Patterns, Anomalies, and Discoveries 299
  • 8.5 The Future 302
  • 8.5.1 Current Challenges 304
  • 8.5.2 Opportunities 305
  • 9 Summary and Future Work 312 /Roy H. Campbell
  • 9.1 Survivability 312
  • 9.2 Risks and Benefits 313
  • 9.3 Detection and Security 314
  • 9.4 Scalability, Workloads, and Performance 316
  • 9.5 Resource Management 319
  • 9.6 Theoretical Considerations: Inferring and Enforcing Use Patterns for Mobile Cloud Assurance 321
  • 9.7 Certifications 322
  • Index 327.