Model identification and data analysis
This book is about constructing models from experimental data. It covers a range of topics, from statistical data prediction to Kalman filtering, from black-box model identification to parameter estimation, from spectral analysis to predictive control. Written for graduate students, this textbook of...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
Wiley
[2019]
|
Edición: | 1st edition |
Colección: | THEi Wiley ebooks.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630610506719 |
Tabla de Contenidos:
- Intro
- Introduction
- Acknowledgments
- 1 Stationary Processes and Time Series
- 1.1 Introduction
- 1.2 The Prediction Problem
- 1.3 Random Variable
- 1.4 Random Vector
- 1.5 Stationary Process
- 1.6 White Process
- 1.7 MA Process
- 1.8 AR Process
- 1.9 Yule-Walker Equations
- 1.10 ARMA Process
- 1.11 Spectrum of a Stationary Process
- 1.12 ARMA Model: Stability Test and Variance Computation
- 1.13 Fundamental Theorem of Spectral Analysis
- 1.14 Spectrum Drawing
- 1.15 Proof of the Fundamental Theorem of Spectral Analysis
- 1.16 Representations of a Stationary Process
- 2 Estimation of Process Characteristics
- 2.1 Introduction
- 2.2 General Properties of the Covariance Function
- 2.3 Covariance Function of ARMA Processes
- 2.4 Estimation of the Mean
- 2.5 Estimation of the Covariance Function
- 2.6 Estimation of the Spectrum
- 2.7 Whiteness Test
- 3 Prediction
- 3.1 Introduction
- 3.2 Fake Predictor
- 3.3 Spectral Factorization
- 3.4 Whitening Filter
- 3.5 Optimal Predictor from Data
- 3.6 Prediction of an ARMA Process
- 3.7 ARMAX Process
- 3.8 Prediction of an ARMAX Process
- 4 Model Identification
- 4.1 Introduction
- 4.2 Setting the Identification Problem
- 4.3 Static Modeling
- 4.4 Dynamic Modeling
- 4.5 External Representation Models
- 4.6 Internal Representation Models
- 4.7 The Model Identification Process
- 4.8 The Predictive Approach
- 4.9 Models in Predictive Form
- 5 Identification of Input-Output Models
- 5.1 Introduction
- 5.2 Estimating AR and ARX Models: The Least Squares Method
- 5.3 Identifiability
- 5.4 Estimating ARMA and ARMAX Models
- 5.5 Asymptotic Analysis
- 5.6 Recursive Identification
- 5.7 Robustness of Identification Methods
- 5.8 Parameter Tracking
- 6 Model Complexity Selection
- 6.1 Introduction
- 6.2 Cross‐validation
- 6.3 FPE Criterion.
- 6.4 AIC Criterion
- 6.5 MDL Criterion
- 6.6 Durbin-Levinson Algorithm
- 7 Identification of State Space Models
- 7.1 Introduction
- 7.2 Hankel Matrix
- 7.3 Order Determination
- 7.4 Determination of Matrices and
- 7.5 Determination of Matrix
- 7.6 Mid Summary: An Ideal Procedure
- 7.7 Order Determination with SVD
- 7.8 Reliable Identification of a State Space Model
- 8 Predictive Control
- 8.1 Introduction
- 8.2 Minimum Variance Control
- 8.3 Generalized Minimum Variance Control
- 8.4 Model‐Based Predictive Control
- 8.5 Data‐Driven Control Synthesis
- 9 Kalman Filtering and Prediction
- 9.1 Introduction
- 9.2 Kalman Approach to Prediction and Filtering Problems
- 9.3 The Bayes Estimation Problem
- 9.4 One‐step‐ahead Kalman Predictor
- 9.5 Multistep Optimal Predictor
- 9.6 Optimal Filter
- 9.7 Steady‐State Predictor
- 9.8 Innovation Representation
- 9.9 Innovation Representation Versus Canonical Representation
- 9.10 K‐Theory Versus K-W Theory
- 9.11 Extended Kalman Filter - EKF
- 9.12 The Robust Approach to Filtering
- 10 Parameter Identification in a Given Model
- 10.1 Introduction
- 10.2 Kalman Filter‐Based Approaches
- 10.3 Two‐Stage Method
- 11 Case Studies
- 11.1 Introduction
- 11.2 Kobe Earthquake Data Analysis
- 11.3 Estimation of a Sinusoid in Noise
- Appendix A: Linear Dynamical Systems
- A.1 State Space and Input-Output Models
- A.2 Lagrange Formula
- A.3 Stability
- A.4 Impulse Response
- A.5 Frequency Response
- A.6 Multiplicity of State Space Models
- A.7 Reachability and Observability
- A.8 System Decomposition
- A.9 Stabilizability and Detectability
- Appendix B: Matrices
- B.1 Basics
- B.2 Eigenvalues
- B.3 Determinant and Inverse
- B.4 Rank
- B.5 Annihilating Polynomial
- B.6 Algebraic and Geometric Multiplicity
- B.7 Range and Null Space
- B.8 Quadratic Forms.
- B.9 Derivative of a Scalar Function with Respect to a Vector
- B.10 Matrix Diagonalization via Similarity
- B.11 Matrix Diagonalization via Singular Value Decomposition
- B.12 Matrix Norm and Condition Number
- Appendix C: Problems and Solutions
- Bibliography
- Further reading
- Index
- End User License Agreement.